Properties

Label 2-4788-1.1-c1-0-17
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 2·11-s + 2·13-s − 2·17-s + 19-s − 6·23-s − 25-s + 8·31-s − 2·35-s + 6·37-s + 8·43-s + 6·47-s + 49-s + 4·55-s + 10·61-s + 4·65-s + 4·67-s − 8·71-s + 6·73-s − 2·77-s − 8·79-s − 6·83-s − 4·85-s + 8·89-s − 2·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 0.603·11-s + 0.554·13-s − 0.485·17-s + 0.229·19-s − 1.25·23-s − 1/5·25-s + 1.43·31-s − 0.338·35-s + 0.986·37-s + 1.21·43-s + 0.875·47-s + 1/7·49-s + 0.539·55-s + 1.28·61-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 0.702·73-s − 0.227·77-s − 0.900·79-s − 0.658·83-s − 0.433·85-s + 0.847·89-s − 0.209·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.358631092\)
\(L(\frac12)\) \(\approx\) \(2.358631092\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.369957576806470730042697469395, −7.55824816512863986169112032651, −6.63950471091123955223945426540, −6.09827076954569557762365258618, −5.61382453770497446170760864869, −4.45380207567394009332607936005, −3.85108594955125640162344451216, −2.74500890226059552917810012261, −1.96786711767249338800192239096, −0.866090107514273170957529972213, 0.866090107514273170957529972213, 1.96786711767249338800192239096, 2.74500890226059552917810012261, 3.85108594955125640162344451216, 4.45380207567394009332607936005, 5.61382453770497446170760864869, 6.09827076954569557762365258618, 6.63950471091123955223945426540, 7.55824816512863986169112032651, 8.369957576806470730042697469395

Graph of the $Z$-function along the critical line