Properties

Label 2-4788-1.1-c1-0-17
Degree 22
Conductor 47884788
Sign 11
Analytic cond. 38.232338.2323
Root an. cond. 6.183236.18323
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 2·11-s + 2·13-s − 2·17-s + 19-s − 6·23-s − 25-s + 8·31-s − 2·35-s + 6·37-s + 8·43-s + 6·47-s + 49-s + 4·55-s + 10·61-s + 4·65-s + 4·67-s − 8·71-s + 6·73-s − 2·77-s − 8·79-s − 6·83-s − 4·85-s + 8·89-s − 2·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 0.603·11-s + 0.554·13-s − 0.485·17-s + 0.229·19-s − 1.25·23-s − 1/5·25-s + 1.43·31-s − 0.338·35-s + 0.986·37-s + 1.21·43-s + 0.875·47-s + 1/7·49-s + 0.539·55-s + 1.28·61-s + 0.496·65-s + 0.488·67-s − 0.949·71-s + 0.702·73-s − 0.227·77-s − 0.900·79-s − 0.658·83-s − 0.433·85-s + 0.847·89-s − 0.209·91-s + 0.205·95-s + ⋯

Functional equation

Λ(s)=(4788s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(4788s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 47884788    =    22327192^{2} \cdot 3^{2} \cdot 7 \cdot 19
Sign: 11
Analytic conductor: 38.232338.2323
Root analytic conductor: 6.183236.18323
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 4788, ( :1/2), 1)(2,\ 4788,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 2.3586310922.358631092
L(12)L(\frac12) \approx 2.3586310922.358631092
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
7 1+T 1 + T
19 1T 1 - T
good5 12T+pT2 1 - 2 T + p T^{2}
11 12T+pT2 1 - 2 T + p T^{2}
13 12T+pT2 1 - 2 T + p T^{2}
17 1+2T+pT2 1 + 2 T + p T^{2}
23 1+6T+pT2 1 + 6 T + p T^{2}
29 1+pT2 1 + p T^{2}
31 18T+pT2 1 - 8 T + p T^{2}
37 16T+pT2 1 - 6 T + p T^{2}
41 1+pT2 1 + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 16T+pT2 1 - 6 T + p T^{2}
53 1+pT2 1 + p T^{2}
59 1+pT2 1 + p T^{2}
61 110T+pT2 1 - 10 T + p T^{2}
67 14T+pT2 1 - 4 T + p T^{2}
71 1+8T+pT2 1 + 8 T + p T^{2}
73 16T+pT2 1 - 6 T + p T^{2}
79 1+8T+pT2 1 + 8 T + p T^{2}
83 1+6T+pT2 1 + 6 T + p T^{2}
89 18T+pT2 1 - 8 T + p T^{2}
97 16T+pT2 1 - 6 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.369957576806470730042697469395, −7.55824816512863986169112032651, −6.63950471091123955223945426540, −6.09827076954569557762365258618, −5.61382453770497446170760864869, −4.45380207567394009332607936005, −3.85108594955125640162344451216, −2.74500890226059552917810012261, −1.96786711767249338800192239096, −0.866090107514273170957529972213, 0.866090107514273170957529972213, 1.96786711767249338800192239096, 2.74500890226059552917810012261, 3.85108594955125640162344451216, 4.45380207567394009332607936005, 5.61382453770497446170760864869, 6.09827076954569557762365258618, 6.63950471091123955223945426540, 7.55824816512863986169112032651, 8.369957576806470730042697469395

Graph of the ZZ-function along the critical line