L(s) = 1 | + 5-s + 7-s − 6.09·11-s − 2.23·13-s + 7.61·17-s − 19-s + 8.70·23-s − 4·25-s − 0.854·29-s − 2.38·31-s + 35-s − 6.70·37-s − 0.0901·41-s + 8.47·43-s − 4.70·47-s + 49-s + 14.3·53-s − 6.09·55-s + 10.7·59-s + 5.47·61-s − 2.23·65-s − 2.09·67-s + 11.1·71-s − 0.909·73-s − 6.09·77-s − 6.94·79-s − 14.6·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 1.83·11-s − 0.620·13-s + 1.84·17-s − 0.229·19-s + 1.81·23-s − 0.800·25-s − 0.158·29-s − 0.427·31-s + 0.169·35-s − 1.10·37-s − 0.0140·41-s + 1.29·43-s − 0.686·47-s + 0.142·49-s + 1.96·53-s − 0.821·55-s + 1.39·59-s + 0.700·61-s − 0.277·65-s − 0.255·67-s + 1.32·71-s − 0.106·73-s − 0.694·77-s − 0.781·79-s − 1.60·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.938721016 |
L(21) |
≈ |
1.938721016 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1−T+5T2 |
| 11 | 1+6.09T+11T2 |
| 13 | 1+2.23T+13T2 |
| 17 | 1−7.61T+17T2 |
| 23 | 1−8.70T+23T2 |
| 29 | 1+0.854T+29T2 |
| 31 | 1+2.38T+31T2 |
| 37 | 1+6.70T+37T2 |
| 41 | 1+0.0901T+41T2 |
| 43 | 1−8.47T+43T2 |
| 47 | 1+4.70T+47T2 |
| 53 | 1−14.3T+53T2 |
| 59 | 1−10.7T+59T2 |
| 61 | 1−5.47T+61T2 |
| 67 | 1+2.09T+67T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1+0.909T+73T2 |
| 79 | 1+6.94T+79T2 |
| 83 | 1+14.6T+83T2 |
| 89 | 1−12.1T+89T2 |
| 97 | 1−8.70T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.236199094675516919659078092017, −7.44898231417672297571748422030, −7.15686561583390945993862983723, −5.79575393009660039737125421828, −5.37421634891878140555700028969, −4.86840392221287782521119728974, −3.63009913458997148789985714402, −2.78958210214579634829878740168, −2.03847630787601743863151891662, −0.76054146354421515469178553735,
0.76054146354421515469178553735, 2.03847630787601743863151891662, 2.78958210214579634829878740168, 3.63009913458997148789985714402, 4.86840392221287782521119728974, 5.37421634891878140555700028969, 5.79575393009660039737125421828, 7.15686561583390945993862983723, 7.44898231417672297571748422030, 8.236199094675516919659078092017