Properties

Label 2-4788-1.1-c1-0-11
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 6.09·11-s − 2.23·13-s + 7.61·17-s − 19-s + 8.70·23-s − 4·25-s − 0.854·29-s − 2.38·31-s + 35-s − 6.70·37-s − 0.0901·41-s + 8.47·43-s − 4.70·47-s + 49-s + 14.3·53-s − 6.09·55-s + 10.7·59-s + 5.47·61-s − 2.23·65-s − 2.09·67-s + 11.1·71-s − 0.909·73-s − 6.09·77-s − 6.94·79-s − 14.6·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 1.83·11-s − 0.620·13-s + 1.84·17-s − 0.229·19-s + 1.81·23-s − 0.800·25-s − 0.158·29-s − 0.427·31-s + 0.169·35-s − 1.10·37-s − 0.0140·41-s + 1.29·43-s − 0.686·47-s + 0.142·49-s + 1.96·53-s − 0.821·55-s + 1.39·59-s + 0.700·61-s − 0.277·65-s − 0.255·67-s + 1.32·71-s − 0.106·73-s − 0.694·77-s − 0.781·79-s − 1.60·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.938721016\)
\(L(\frac12)\) \(\approx\) \(1.938721016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - T + 5T^{2} \)
11 \( 1 + 6.09T + 11T^{2} \)
13 \( 1 + 2.23T + 13T^{2} \)
17 \( 1 - 7.61T + 17T^{2} \)
23 \( 1 - 8.70T + 23T^{2} \)
29 \( 1 + 0.854T + 29T^{2} \)
31 \( 1 + 2.38T + 31T^{2} \)
37 \( 1 + 6.70T + 37T^{2} \)
41 \( 1 + 0.0901T + 41T^{2} \)
43 \( 1 - 8.47T + 43T^{2} \)
47 \( 1 + 4.70T + 47T^{2} \)
53 \( 1 - 14.3T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 - 5.47T + 61T^{2} \)
67 \( 1 + 2.09T + 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 + 0.909T + 73T^{2} \)
79 \( 1 + 6.94T + 79T^{2} \)
83 \( 1 + 14.6T + 83T^{2} \)
89 \( 1 - 12.1T + 89T^{2} \)
97 \( 1 - 8.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.236199094675516919659078092017, −7.44898231417672297571748422030, −7.15686561583390945993862983723, −5.79575393009660039737125421828, −5.37421634891878140555700028969, −4.86840392221287782521119728974, −3.63009913458997148789985714402, −2.78958210214579634829878740168, −2.03847630787601743863151891662, −0.76054146354421515469178553735, 0.76054146354421515469178553735, 2.03847630787601743863151891662, 2.78958210214579634829878740168, 3.63009913458997148789985714402, 4.86840392221287782521119728974, 5.37421634891878140555700028969, 5.79575393009660039737125421828, 7.15686561583390945993862983723, 7.44898231417672297571748422030, 8.236199094675516919659078092017

Graph of the $Z$-function along the critical line