L(s) = 1 | − 3.82·5-s + 7-s − 5.86·11-s − 0.605·13-s + 2.04·17-s + 19-s − 5.86·23-s + 9.60·25-s + 2.04·29-s − 6.60·31-s − 3.82·35-s + 2·37-s − 5.86·41-s − 6.60·43-s − 2.04·47-s + 49-s − 3.82·53-s + 22.4·55-s − 11.7·59-s + 2·61-s + 2.31·65-s − 9.21·67-s + 15.5·71-s + 7.21·73-s − 5.86·77-s − 4·79-s + 3.82·83-s + ⋯ |
L(s) = 1 | − 1.70·5-s + 0.377·7-s − 1.76·11-s − 0.167·13-s + 0.496·17-s + 0.229·19-s − 1.22·23-s + 1.92·25-s + 0.379·29-s − 1.18·31-s − 0.645·35-s + 0.328·37-s − 0.916·41-s − 1.00·43-s − 0.298·47-s + 0.142·49-s − 0.524·53-s + 3.02·55-s − 1.52·59-s + 0.256·61-s + 0.287·65-s − 1.12·67-s + 1.84·71-s + 0.843·73-s − 0.668·77-s − 0.450·79-s + 0.419·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6402486815\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6402486815\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 + 3.82T + 5T^{2} \) |
| 11 | \( 1 + 5.86T + 11T^{2} \) |
| 13 | \( 1 + 0.605T + 13T^{2} \) |
| 17 | \( 1 - 2.04T + 17T^{2} \) |
| 23 | \( 1 + 5.86T + 23T^{2} \) |
| 29 | \( 1 - 2.04T + 29T^{2} \) |
| 31 | \( 1 + 6.60T + 31T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + 5.86T + 41T^{2} \) |
| 43 | \( 1 + 6.60T + 43T^{2} \) |
| 47 | \( 1 + 2.04T + 47T^{2} \) |
| 53 | \( 1 + 3.82T + 53T^{2} \) |
| 59 | \( 1 + 11.7T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + 9.21T + 67T^{2} \) |
| 71 | \( 1 - 15.5T + 71T^{2} \) |
| 73 | \( 1 - 7.21T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 3.82T + 83T^{2} \) |
| 89 | \( 1 - 9.41T + 89T^{2} \) |
| 97 | \( 1 + 3.21T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.057208645062100914891131107633, −7.72751939041831482213467632678, −7.17461489956016676716570080619, −6.07664026699545060227356977369, −5.09874545954415629192598241149, −4.67995064444232080583014311675, −3.65786179070960783909337212316, −3.09944326336586371046159877865, −1.96667987533243909310714724049, −0.42164205873307662847978819280,
0.42164205873307662847978819280, 1.96667987533243909310714724049, 3.09944326336586371046159877865, 3.65786179070960783909337212316, 4.67995064444232080583014311675, 5.09874545954415629192598241149, 6.07664026699545060227356977369, 7.17461489956016676716570080619, 7.72751939041831482213467632678, 8.057208645062100914891131107633