Properties

Label 2-4788-1.1-c1-0-1
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.82·5-s + 7-s − 5.86·11-s − 0.605·13-s + 2.04·17-s + 19-s − 5.86·23-s + 9.60·25-s + 2.04·29-s − 6.60·31-s − 3.82·35-s + 2·37-s − 5.86·41-s − 6.60·43-s − 2.04·47-s + 49-s − 3.82·53-s + 22.4·55-s − 11.7·59-s + 2·61-s + 2.31·65-s − 9.21·67-s + 15.5·71-s + 7.21·73-s − 5.86·77-s − 4·79-s + 3.82·83-s + ⋯
L(s)  = 1  − 1.70·5-s + 0.377·7-s − 1.76·11-s − 0.167·13-s + 0.496·17-s + 0.229·19-s − 1.22·23-s + 1.92·25-s + 0.379·29-s − 1.18·31-s − 0.645·35-s + 0.328·37-s − 0.916·41-s − 1.00·43-s − 0.298·47-s + 0.142·49-s − 0.524·53-s + 3.02·55-s − 1.52·59-s + 0.256·61-s + 0.287·65-s − 1.12·67-s + 1.84·71-s + 0.843·73-s − 0.668·77-s − 0.450·79-s + 0.419·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6402486815\)
\(L(\frac12)\) \(\approx\) \(0.6402486815\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 + 3.82T + 5T^{2} \)
11 \( 1 + 5.86T + 11T^{2} \)
13 \( 1 + 0.605T + 13T^{2} \)
17 \( 1 - 2.04T + 17T^{2} \)
23 \( 1 + 5.86T + 23T^{2} \)
29 \( 1 - 2.04T + 29T^{2} \)
31 \( 1 + 6.60T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 5.86T + 41T^{2} \)
43 \( 1 + 6.60T + 43T^{2} \)
47 \( 1 + 2.04T + 47T^{2} \)
53 \( 1 + 3.82T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 9.21T + 67T^{2} \)
71 \( 1 - 15.5T + 71T^{2} \)
73 \( 1 - 7.21T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 3.82T + 83T^{2} \)
89 \( 1 - 9.41T + 89T^{2} \)
97 \( 1 + 3.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.057208645062100914891131107633, −7.72751939041831482213467632678, −7.17461489956016676716570080619, −6.07664026699545060227356977369, −5.09874545954415629192598241149, −4.67995064444232080583014311675, −3.65786179070960783909337212316, −3.09944326336586371046159877865, −1.96667987533243909310714724049, −0.42164205873307662847978819280, 0.42164205873307662847978819280, 1.96667987533243909310714724049, 3.09944326336586371046159877865, 3.65786179070960783909337212316, 4.67995064444232080583014311675, 5.09874545954415629192598241149, 6.07664026699545060227356977369, 7.17461489956016676716570080619, 7.72751939041831482213467632678, 8.057208645062100914891131107633

Graph of the $Z$-function along the critical line