L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − i·7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + (−0.866 + 1.49i)12-s + 13-s + (−0.866 − 0.5i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (1 + 1.73i)18-s + (−1.5 + 0.866i)21-s + 1.73·22-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − i·7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + (−0.866 + 1.49i)12-s + 13-s + (−0.866 − 0.5i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (1 + 1.73i)18-s + (−1.5 + 0.866i)21-s + 1.73·22-s + ⋯ |
Λ(s)=(=(476s/2ΓC(s)L(s)(−0.997+0.0633i)Λ(1−s)
Λ(s)=(=(476s/2ΓC(s)L(s)(−0.997+0.0633i)Λ(1−s)
Degree: |
2 |
Conductor: |
476
= 22⋅7⋅17
|
Sign: |
−0.997+0.0633i
|
Analytic conductor: |
0.237554 |
Root analytic conductor: |
0.487396 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ476(135,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 476, ( :0), −0.997+0.0633i)
|
Particular Values
L(21) |
≈ |
0.7966479076 |
L(21) |
≈ |
0.7966479076 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 7 | 1+iT |
| 17 | 1+(0.5+0.866i)T |
good | 3 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 13 | 1−T+T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−1.73T+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.09535139220431389658158850983, −10.26181528170142932020872155541, −9.189168278053678897071393153337, −7.79619662493473746985943868253, −6.81473999656473342397938340318, −6.28913316104520850601139058727, −4.97159460935988884613838754383, −3.97962228810159768289381329074, −2.17144802826572071518473476174, −1.08987278157440062378599310698,
3.39453644134763664225732626843, 4.01465038350638189169196351049, 5.27576068283942987298436104519, 5.91439906930685071175477783227, 6.47252090941402724136107794406, 8.395387336984686484425394313451, 8.855694864116422952925778850403, 9.699092736512341396188385167651, 11.13484282716842273688163895251, 11.36622786111648245464148500183