L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − i·7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + (−0.866 + 1.49i)12-s + 13-s + (−0.866 − 0.5i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (1 + 1.73i)18-s + (−1.5 + 0.866i)21-s + 1.73·22-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 − 0.866i)4-s − 1.73·6-s − i·7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.5i)11-s + (−0.866 + 1.49i)12-s + 13-s + (−0.866 − 0.5i)14-s + (−0.5 + 0.866i)16-s + (−0.5 − 0.866i)17-s + (1 + 1.73i)18-s + (−1.5 + 0.866i)21-s + 1.73·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7966479076\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7966479076\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + iT \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.09535139220431389658158850983, −10.26181528170142932020872155541, −9.189168278053678897071393153337, −7.79619662493473746985943868253, −6.81473999656473342397938340318, −6.28913316104520850601139058727, −4.97159460935988884613838754383, −3.97962228810159768289381329074, −2.17144802826572071518473476174, −1.08987278157440062378599310698,
3.39453644134763664225732626843, 4.01465038350638189169196351049, 5.27576068283942987298436104519, 5.91439906930685071175477783227, 6.47252090941402724136107794406, 8.395387336984686484425394313451, 8.855694864116422952925778850403, 9.699092736512341396188385167651, 11.13484282716842273688163895251, 11.36622786111648245464148500183