Properties

Label 2-475-95.49-c1-0-8
Degree 22
Conductor 475475
Sign 0.8460.532i0.846 - 0.532i
Analytic cond. 3.792893.79289
Root an. cond. 1.947531.94753
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.73 + i)3-s + (−1 − 1.73i)4-s + 4i·7-s + (0.499 + 0.866i)9-s + 3·11-s − 3.99i·12-s + (1.73 − i)13-s + (−1.99 + 3.46i)16-s + (5.19 + 3i)17-s + (3.5 + 2.59i)19-s + (−4 + 6.92i)21-s − 4.00i·27-s + (6.92 − 4i)28-s + (−1.5 − 2.59i)29-s − 7·31-s + ⋯
L(s)  = 1  + (0.999 + 0.577i)3-s + (−0.5 − 0.866i)4-s + 1.51i·7-s + (0.166 + 0.288i)9-s + 0.904·11-s − 1.15i·12-s + (0.480 − 0.277i)13-s + (−0.499 + 0.866i)16-s + (1.26 + 0.727i)17-s + (0.802 + 0.596i)19-s + (−0.872 + 1.51i)21-s − 0.769i·27-s + (1.30 − 0.755i)28-s + (−0.278 − 0.482i)29-s − 1.25·31-s + ⋯

Functional equation

Λ(s)=(475s/2ΓC(s)L(s)=((0.8460.532i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 - 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(475s/2ΓC(s+1/2)L(s)=((0.8460.532i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 - 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 475475    =    52195^{2} \cdot 19
Sign: 0.8460.532i0.846 - 0.532i
Analytic conductor: 3.792893.79289
Root analytic conductor: 1.947531.94753
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ475(49,)\chi_{475} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 475, ( :1/2), 0.8460.532i)(2,\ 475,\ (\ :1/2),\ 0.846 - 0.532i)

Particular Values

L(1)L(1) \approx 1.76655+0.509454i1.76655 + 0.509454i
L(12)L(\frac12) \approx 1.76655+0.509454i1.76655 + 0.509454i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
19 1+(3.52.59i)T 1 + (-3.5 - 2.59i)T
good2 1+(1+1.73i)T2 1 + (1 + 1.73i)T^{2}
3 1+(1.73i)T+(1.5+2.59i)T2 1 + (-1.73 - i)T + (1.5 + 2.59i)T^{2}
7 14iT7T2 1 - 4iT - 7T^{2}
11 13T+11T2 1 - 3T + 11T^{2}
13 1+(1.73+i)T+(6.511.2i)T2 1 + (-1.73 + i)T + (6.5 - 11.2i)T^{2}
17 1+(5.193i)T+(8.5+14.7i)T2 1 + (-5.19 - 3i)T + (8.5 + 14.7i)T^{2}
23 1+(11.519.9i)T2 1 + (11.5 - 19.9i)T^{2}
29 1+(1.5+2.59i)T+(14.5+25.1i)T2 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2}
31 1+7T+31T2 1 + 7T + 31T^{2}
37 1+8iT37T2 1 + 8iT - 37T^{2}
41 1+(3+5.19i)T+(20.535.5i)T2 1 + (-3 + 5.19i)T + (-20.5 - 35.5i)T^{2}
43 1+(3.462i)T+(21.5+37.2i)T2 1 + (-3.46 - 2i)T + (21.5 + 37.2i)T^{2}
47 1+(5.193i)T+(23.540.7i)T2 1 + (5.19 - 3i)T + (23.5 - 40.7i)T^{2}
53 1+(5.193i)T+(26.545.8i)T2 1 + (5.19 - 3i)T + (26.5 - 45.8i)T^{2}
59 1+(7.512.9i)T+(29.551.0i)T2 1 + (7.5 - 12.9i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.5+4.33i)T+(30.5+52.8i)T2 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2}
67 1+(1.73i)T+(33.558.0i)T2 1 + (1.73 - i)T + (33.5 - 58.0i)T^{2}
71 1+(1.5+2.59i)T+(35.561.4i)T2 1 + (-1.5 + 2.59i)T + (-35.5 - 61.4i)T^{2}
73 1+(6.92+4i)T+(36.5+63.2i)T2 1 + (6.92 + 4i)T + (36.5 + 63.2i)T^{2}
79 1+(2.5+4.33i)T+(39.568.4i)T2 1 + (-2.5 + 4.33i)T + (-39.5 - 68.4i)T^{2}
83 112iT83T2 1 - 12iT - 83T^{2}
89 1+(7.5+12.9i)T+(44.5+77.0i)T2 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2}
97 1+(6.924i)T+(48.5+84.0i)T2 1 + (-6.92 - 4i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.91381483453929153099001190199, −9.844501474706357922007565514408, −9.228234855902200390235690546355, −8.783436304268985795564881361405, −7.77464208771795972208962237532, −5.96004480878040017705807850892, −5.65087247543136885852418416393, −4.14581044886372423467508100544, −3.18598208237196360298998038068, −1.68963123435614751517504654443, 1.26052134014176786655065684227, 3.14190017737766234071291479024, 3.73746216017072337283333209722, 4.94418267041729288861672119069, 6.78498553458026951830260153804, 7.47027233913951022615622415120, 8.030173661203425597557555437492, 9.086983046505120545913033479251, 9.704515666828232234332986424584, 11.04334793401683353504668690531

Graph of the ZZ-function along the critical line