Properties

Label 2-475-95.3-c1-0-11
Degree $2$
Conductor $475$
Sign $0.998 + 0.0451i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0741 − 0.847i)2-s + (−0.344 + 0.737i)3-s + (1.25 − 0.221i)4-s + (0.650 + 0.236i)6-s + (3.83 + 1.02i)7-s + (−0.721 − 2.69i)8-s + (1.50 + 1.79i)9-s + (−2.45 + 4.25i)11-s + (−0.269 + 1.00i)12-s + (−1.10 + 0.515i)13-s + (0.586 − 3.32i)14-s + (0.173 − 0.0630i)16-s + (1.40 − 0.122i)17-s + (1.40 − 1.40i)18-s + (−4.22 − 1.07i)19-s + ⋯
L(s)  = 1  + (−0.0524 − 0.598i)2-s + (−0.198 + 0.426i)3-s + (0.628 − 0.110i)4-s + (0.265 + 0.0966i)6-s + (1.45 + 0.388i)7-s + (−0.254 − 0.951i)8-s + (0.500 + 0.596i)9-s + (−0.740 + 1.28i)11-s + (−0.0776 + 0.289i)12-s + (−0.306 + 0.143i)13-s + (0.156 − 0.889i)14-s + (0.0433 − 0.0157i)16-s + (0.340 − 0.0297i)17-s + (0.331 − 0.331i)18-s + (−0.968 − 0.247i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0451i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $0.998 + 0.0451i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 0.998 + 0.0451i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.73375 - 0.0391624i\)
\(L(\frac12)\) \(\approx\) \(1.73375 - 0.0391624i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + (4.22 + 1.07i)T \)
good2 \( 1 + (0.0741 + 0.847i)T + (-1.96 + 0.347i)T^{2} \)
3 \( 1 + (0.344 - 0.737i)T + (-1.92 - 2.29i)T^{2} \)
7 \( 1 + (-3.83 - 1.02i)T + (6.06 + 3.5i)T^{2} \)
11 \( 1 + (2.45 - 4.25i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (1.10 - 0.515i)T + (8.35 - 9.95i)T^{2} \)
17 \( 1 + (-1.40 + 0.122i)T + (16.7 - 2.95i)T^{2} \)
23 \( 1 + (-0.867 + 1.23i)T + (-7.86 - 21.6i)T^{2} \)
29 \( 1 + (-1.63 + 1.37i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-8.01 + 4.62i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-6.74 - 6.74i)T + 37iT^{2} \)
41 \( 1 + (-0.783 - 2.15i)T + (-31.4 + 26.3i)T^{2} \)
43 \( 1 + (-1.09 + 0.769i)T + (14.7 - 40.4i)T^{2} \)
47 \( 1 + (-0.434 + 4.96i)T + (-46.2 - 8.16i)T^{2} \)
53 \( 1 + (7.59 + 5.31i)T + (18.1 + 49.8i)T^{2} \)
59 \( 1 + (9.46 + 7.94i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.09 + 6.20i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (8.76 + 0.766i)T + (65.9 + 11.6i)T^{2} \)
71 \( 1 + (2.67 + 0.471i)T + (66.7 + 24.2i)T^{2} \)
73 \( 1 + (-0.139 - 0.0649i)T + (46.9 + 55.9i)T^{2} \)
79 \( 1 + (-1.57 + 0.574i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (0.200 - 0.747i)T + (-71.8 - 41.5i)T^{2} \)
89 \( 1 + (3.86 + 1.40i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (0.860 + 9.84i)T + (-95.5 + 16.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00059245634711374471758165495, −10.24717735812669560190786540593, −9.646715174938986948732264096183, −8.139506956042776712046883661974, −7.53410325490540544551882693955, −6.33769731561970533159699880212, −4.92242022122763759646725472020, −4.46388349117402170034872981491, −2.54699514291410717310535016407, −1.73904358236532530862936631012, 1.31019861671314860493432665133, 2.81874661822914918328961984020, 4.43422640888372389396520427542, 5.62641169172894831446913391972, 6.38454948909942123034868430097, 7.53296951625122951846298390253, 7.950753748983195662212239612119, 8.861176054906557484344240660478, 10.47043370229784826271985632250, 10.98808052739100161114339596083

Graph of the $Z$-function along the critical line