L(s) = 1 | + (−0.0741 − 0.847i)2-s + (−0.344 + 0.737i)3-s + (1.25 − 0.221i)4-s + (0.650 + 0.236i)6-s + (3.83 + 1.02i)7-s + (−0.721 − 2.69i)8-s + (1.50 + 1.79i)9-s + (−2.45 + 4.25i)11-s + (−0.269 + 1.00i)12-s + (−1.10 + 0.515i)13-s + (0.586 − 3.32i)14-s + (0.173 − 0.0630i)16-s + (1.40 − 0.122i)17-s + (1.40 − 1.40i)18-s + (−4.22 − 1.07i)19-s + ⋯ |
L(s) = 1 | + (−0.0524 − 0.598i)2-s + (−0.198 + 0.426i)3-s + (0.628 − 0.110i)4-s + (0.265 + 0.0966i)6-s + (1.45 + 0.388i)7-s + (−0.254 − 0.951i)8-s + (0.500 + 0.596i)9-s + (−0.740 + 1.28i)11-s + (−0.0776 + 0.289i)12-s + (−0.306 + 0.143i)13-s + (0.156 − 0.889i)14-s + (0.0433 − 0.0157i)16-s + (0.340 − 0.0297i)17-s + (0.331 − 0.331i)18-s + (−0.968 − 0.247i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.73375 - 0.0391624i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73375 - 0.0391624i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (4.22 + 1.07i)T \) |
good | 2 | \( 1 + (0.0741 + 0.847i)T + (-1.96 + 0.347i)T^{2} \) |
| 3 | \( 1 + (0.344 - 0.737i)T + (-1.92 - 2.29i)T^{2} \) |
| 7 | \( 1 + (-3.83 - 1.02i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (2.45 - 4.25i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.10 - 0.515i)T + (8.35 - 9.95i)T^{2} \) |
| 17 | \( 1 + (-1.40 + 0.122i)T + (16.7 - 2.95i)T^{2} \) |
| 23 | \( 1 + (-0.867 + 1.23i)T + (-7.86 - 21.6i)T^{2} \) |
| 29 | \( 1 + (-1.63 + 1.37i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-8.01 + 4.62i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.74 - 6.74i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.783 - 2.15i)T + (-31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.09 + 0.769i)T + (14.7 - 40.4i)T^{2} \) |
| 47 | \( 1 + (-0.434 + 4.96i)T + (-46.2 - 8.16i)T^{2} \) |
| 53 | \( 1 + (7.59 + 5.31i)T + (18.1 + 49.8i)T^{2} \) |
| 59 | \( 1 + (9.46 + 7.94i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (1.09 + 6.20i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (8.76 + 0.766i)T + (65.9 + 11.6i)T^{2} \) |
| 71 | \( 1 + (2.67 + 0.471i)T + (66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (-0.139 - 0.0649i)T + (46.9 + 55.9i)T^{2} \) |
| 79 | \( 1 + (-1.57 + 0.574i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (0.200 - 0.747i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (3.86 + 1.40i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (0.860 + 9.84i)T + (-95.5 + 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00059245634711374471758165495, −10.24717735812669560190786540593, −9.646715174938986948732264096183, −8.139506956042776712046883661974, −7.53410325490540544551882693955, −6.33769731561970533159699880212, −4.92242022122763759646725472020, −4.46388349117402170034872981491, −2.54699514291410717310535016407, −1.73904358236532530862936631012,
1.31019861671314860493432665133, 2.81874661822914918328961984020, 4.43422640888372389396520427542, 5.62641169172894831446913391972, 6.38454948909942123034868430097, 7.53296951625122951846298390253, 7.950753748983195662212239612119, 8.861176054906557484344240660478, 10.47043370229784826271985632250, 10.98808052739100161114339596083