L(s) = 1 | + (−1.08 + 1.87i)2-s + (−1.47 + 2.55i)3-s + (−1.35 − 2.34i)4-s + (−3.20 − 5.54i)6-s + 0.591·7-s + 1.53·8-s + (−2.85 − 4.94i)9-s + 2.58·11-s + 7.99·12-s + (−3.43 − 5.94i)13-s + (−0.641 + 1.11i)14-s + (1.03 − 1.79i)16-s + (2.61 − 4.53i)17-s + 12.3·18-s + (−2.26 + 3.72i)19-s + ⋯ |
L(s) = 1 | + (−0.767 + 1.32i)2-s + (−0.852 + 1.47i)3-s + (−0.677 − 1.17i)4-s + (−1.30 − 2.26i)6-s + 0.223·7-s + 0.544·8-s + (−0.952 − 1.64i)9-s + 0.778·11-s + 2.30·12-s + (−0.952 − 1.64i)13-s + (−0.171 + 0.297i)14-s + (0.259 − 0.449i)16-s + (0.634 − 1.09i)17-s + 2.92·18-s + (−0.519 + 0.854i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.981−0.189i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.981−0.189i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.981−0.189i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.981−0.189i)
|
Particular Values
L(1) |
≈ |
0.233514+0.0222797i |
L(21) |
≈ |
0.233514+0.0222797i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(2.26−3.72i)T |
good | 2 | 1+(1.08−1.87i)T+(−1−1.73i)T2 |
| 3 | 1+(1.47−2.55i)T+(−1.5−2.59i)T2 |
| 7 | 1−0.591T+7T2 |
| 11 | 1−2.58T+11T2 |
| 13 | 1+(3.43+5.94i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2.61+4.53i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.45+2.51i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.52+6.10i)T+(−14.5+25.1i)T2 |
| 31 | 1+6.81T+31T2 |
| 37 | 1+4.82T+37T2 |
| 41 | 1+(3.11−5.39i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.18−3.77i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.27+2.21i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−4.79−8.30i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.46+2.53i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.16+2.01i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.15+3.72i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−6.74+11.6i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−4.21+7.29i)T+(−36.5−63.2i)T2 |
| 79 | 1+(2.93−5.08i)T+(−39.5−68.4i)T2 |
| 83 | 1+4.02T+83T2 |
| 89 | 1+(1.85+3.21i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.26−2.18i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63994572131221698983166694469, −9.851730236644133317268565437849, −9.447755446700107801281524442352, −8.292029889723161211591547786462, −7.45507788860271529393423490597, −6.22714176789876102204113146462, −5.49669475375315674111875247463, −4.77729724064049683418017150367, −3.39168940184628059638862076542, −0.20833379265042068267002087974,
1.51460073396632903357543777364, 2.05755558609525390689132929757, 3.82899261827583705117741769017, 5.39900321785720619239792652892, 6.64301845586023668846479348419, 7.25614137920916750281528064427, 8.490253122290367439964315343501, 9.245136516241329228820814902086, 10.33780934533785417938834378679, 11.35071469558657578430102098175