Properties

Label 2-475-1.1-c1-0-27
Degree $2$
Conductor $475$
Sign $-1$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48·2-s − 0.806·3-s + 0.193·4-s − 1.19·6-s − 3.35·7-s − 2.67·8-s − 2.35·9-s + 0.962·11-s − 0.156·12-s − 6.15·13-s − 4.96·14-s − 4.35·16-s + 6.31·17-s − 3.48·18-s − 19-s + 2.70·21-s + 1.42·22-s + 4.96·23-s + 2.15·24-s − 9.11·26-s + 4.31·27-s − 0.649·28-s − 3.61·29-s − 5.92·31-s − 1.09·32-s − 0.775·33-s + 9.35·34-s + ⋯
L(s)  = 1  + 1.04·2-s − 0.465·3-s + 0.0969·4-s − 0.487·6-s − 1.26·7-s − 0.945·8-s − 0.783·9-s + 0.290·11-s − 0.0451·12-s − 1.70·13-s − 1.32·14-s − 1.08·16-s + 1.53·17-s − 0.820·18-s − 0.229·19-s + 0.589·21-s + 0.303·22-s + 1.03·23-s + 0.440·24-s − 1.78·26-s + 0.829·27-s − 0.122·28-s − 0.670·29-s − 1.06·31-s − 0.193·32-s − 0.135·33-s + 1.60·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 1.48T + 2T^{2} \)
3 \( 1 + 0.806T + 3T^{2} \)
7 \( 1 + 3.35T + 7T^{2} \)
11 \( 1 - 0.962T + 11T^{2} \)
13 \( 1 + 6.15T + 13T^{2} \)
17 \( 1 - 6.31T + 17T^{2} \)
23 \( 1 - 4.96T + 23T^{2} \)
29 \( 1 + 3.61T + 29T^{2} \)
31 \( 1 + 5.92T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 - 6.31T + 41T^{2} \)
43 \( 1 - 4.12T + 43T^{2} \)
47 \( 1 + 3.35T + 47T^{2} \)
53 \( 1 + 1.84T + 53T^{2} \)
59 \( 1 + 6.38T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 - 6.73T + 67T^{2} \)
71 \( 1 + 0.775T + 71T^{2} \)
73 \( 1 + 0.387T + 73T^{2} \)
79 \( 1 + 0.836T + 79T^{2} \)
83 \( 1 - 7.03T + 83T^{2} \)
89 \( 1 - 7.08T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68706585680744218921860629453, −9.596030474136190821664917785490, −9.066418741591584822201264381691, −7.52786815767506675418148855799, −6.53381958851570359278476920409, −5.61833942145190438759590697906, −4.99171169998799150443949090789, −3.58462042181120631379624837386, −2.81151268124156327008609849566, 0, 2.81151268124156327008609849566, 3.58462042181120631379624837386, 4.99171169998799150443949090789, 5.61833942145190438759590697906, 6.53381958851570359278476920409, 7.52786815767506675418148855799, 9.066418741591584822201264381691, 9.596030474136190821664917785490, 10.68706585680744218921860629453

Graph of the $Z$-function along the critical line