L(s) = 1 | + 1.48·2-s − 0.806·3-s + 0.193·4-s − 1.19·6-s − 3.35·7-s − 2.67·8-s − 2.35·9-s + 0.962·11-s − 0.156·12-s − 6.15·13-s − 4.96·14-s − 4.35·16-s + 6.31·17-s − 3.48·18-s − 19-s + 2.70·21-s + 1.42·22-s + 4.96·23-s + 2.15·24-s − 9.11·26-s + 4.31·27-s − 0.649·28-s − 3.61·29-s − 5.92·31-s − 1.09·32-s − 0.775·33-s + 9.35·34-s + ⋯ |
L(s) = 1 | + 1.04·2-s − 0.465·3-s + 0.0969·4-s − 0.487·6-s − 1.26·7-s − 0.945·8-s − 0.783·9-s + 0.290·11-s − 0.0451·12-s − 1.70·13-s − 1.32·14-s − 1.08·16-s + 1.53·17-s − 0.820·18-s − 0.229·19-s + 0.589·21-s + 0.303·22-s + 1.03·23-s + 0.440·24-s − 1.78·26-s + 0.829·27-s − 0.122·28-s − 0.670·29-s − 1.06·31-s − 0.193·32-s − 0.135·33-s + 1.60·34-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+T |
good | 2 | 1−1.48T+2T2 |
| 3 | 1+0.806T+3T2 |
| 7 | 1+3.35T+7T2 |
| 11 | 1−0.962T+11T2 |
| 13 | 1+6.15T+13T2 |
| 17 | 1−6.31T+17T2 |
| 23 | 1−4.96T+23T2 |
| 29 | 1+3.61T+29T2 |
| 31 | 1+5.92T+31T2 |
| 37 | 1+10.1T+37T2 |
| 41 | 1−6.31T+41T2 |
| 43 | 1−4.12T+43T2 |
| 47 | 1+3.35T+47T2 |
| 53 | 1+1.84T+53T2 |
| 59 | 1+6.38T+59T2 |
| 61 | 1+11.2T+61T2 |
| 67 | 1−6.73T+67T2 |
| 71 | 1+0.775T+71T2 |
| 73 | 1+0.387T+73T2 |
| 79 | 1+0.836T+79T2 |
| 83 | 1−7.03T+83T2 |
| 89 | 1−7.08T+89T2 |
| 97 | 1+10.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68706585680744218921860629453, −9.596030474136190821664917785490, −9.066418741591584822201264381691, −7.52786815767506675418148855799, −6.53381958851570359278476920409, −5.61833942145190438759590697906, −4.99171169998799150443949090789, −3.58462042181120631379624837386, −2.81151268124156327008609849566, 0,
2.81151268124156327008609849566, 3.58462042181120631379624837386, 4.99171169998799150443949090789, 5.61833942145190438759590697906, 6.53381958851570359278476920409, 7.52786815767506675418148855799, 9.066418741591584822201264381691, 9.596030474136190821664917785490, 10.68706585680744218921860629453