Properties

Label 2-475-1.1-c1-0-22
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.80·2-s + 0.554·3-s + 5.85·4-s + 1.55·6-s − 3.04·7-s + 10.7·8-s − 2.69·9-s − 2.93·11-s + 3.24·12-s + 3.24·13-s − 8.54·14-s + 18.5·16-s − 2.15·17-s − 7.54·18-s − 19-s − 1.69·21-s − 8.23·22-s + 1.19·23-s + 5.98·24-s + 9.09·26-s − 3.15·27-s − 17.8·28-s − 1.77·29-s − 9.34·31-s + 30.3·32-s − 1.63·33-s − 6.04·34-s + ⋯
L(s)  = 1  + 1.98·2-s + 0.320·3-s + 2.92·4-s + 0.634·6-s − 1.15·7-s + 3.81·8-s − 0.897·9-s − 0.886·11-s + 0.937·12-s + 0.900·13-s − 2.28·14-s + 4.63·16-s − 0.523·17-s − 1.77·18-s − 0.229·19-s − 0.369·21-s − 1.75·22-s + 0.249·23-s + 1.22·24-s + 1.78·26-s − 0.607·27-s − 3.37·28-s − 0.329·29-s − 1.67·31-s + 5.36·32-s − 0.283·33-s − 1.03·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.352259865\)
\(L(\frac12)\) \(\approx\) \(4.352259865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 2.80T + 2T^{2} \)
3 \( 1 - 0.554T + 3T^{2} \)
7 \( 1 + 3.04T + 7T^{2} \)
11 \( 1 + 2.93T + 11T^{2} \)
13 \( 1 - 3.24T + 13T^{2} \)
17 \( 1 + 2.15T + 17T^{2} \)
23 \( 1 - 1.19T + 23T^{2} \)
29 \( 1 + 1.77T + 29T^{2} \)
31 \( 1 + 9.34T + 31T^{2} \)
37 \( 1 + 1.15T + 37T^{2} \)
41 \( 1 - 8.57T + 41T^{2} \)
43 \( 1 - 5.27T + 43T^{2} \)
47 \( 1 - 2.35T + 47T^{2} \)
53 \( 1 - 8.82T + 53T^{2} \)
59 \( 1 + 5.70T + 59T^{2} \)
61 \( 1 + 9.96T + 61T^{2} \)
67 \( 1 - 4.98T + 67T^{2} \)
71 \( 1 - 2.70T + 71T^{2} \)
73 \( 1 - 13.7T + 73T^{2} \)
79 \( 1 - 5.66T + 79T^{2} \)
83 \( 1 + 3.00T + 83T^{2} \)
89 \( 1 + 10.2T + 89T^{2} \)
97 \( 1 - 3.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03986268066041007923678197459, −10.76096453834377468072192542832, −9.275746539685960745523985903126, −7.941645861540312886436099168519, −6.93339324115327041452993030567, −6.00895571247158549336326661072, −5.42086286315542444767795729610, −4.03547890334950797372237490482, −3.21317720562659336125363041437, −2.33701947189199226304313544048, 2.33701947189199226304313544048, 3.21317720562659336125363041437, 4.03547890334950797372237490482, 5.42086286315542444767795729610, 6.00895571247158549336326661072, 6.93339324115327041452993030567, 7.941645861540312886436099168519, 9.275746539685960745523985903126, 10.76096453834377468072192542832, 11.03986268066041007923678197459

Graph of the $Z$-function along the critical line