Properties

Label 2-471-1.1-c5-0-17
Degree $2$
Conductor $471$
Sign $1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.247·2-s + 9·3-s − 31.9·4-s + 8.82·5-s − 2.22·6-s − 254.·7-s + 15.7·8-s + 81·9-s − 2.18·10-s − 561.·11-s − 287.·12-s + 848.·13-s + 62.7·14-s + 79.4·15-s + 1.01e3·16-s + 300.·17-s − 20.0·18-s − 2.66e3·19-s − 281.·20-s − 2.28e3·21-s + 138.·22-s − 4.06e3·23-s + 142.·24-s − 3.04e3·25-s − 209.·26-s + 729·27-s + 8.11e3·28-s + ⋯
L(s)  = 1  − 0.0436·2-s + 0.577·3-s − 0.998·4-s + 0.157·5-s − 0.0252·6-s − 1.95·7-s + 0.0872·8-s + 0.333·9-s − 0.00689·10-s − 1.39·11-s − 0.576·12-s + 1.39·13-s + 0.0855·14-s + 0.0911·15-s + 0.994·16-s + 0.251·17-s − 0.0145·18-s − 1.69·19-s − 0.157·20-s − 1.13·21-s + 0.0611·22-s − 1.60·23-s + 0.0503·24-s − 0.975·25-s − 0.0608·26-s + 0.192·27-s + 1.95·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6983619148\)
\(L(\frac12)\) \(\approx\) \(0.6983619148\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
157 \( 1 + 2.46e4T \)
good2 \( 1 + 0.247T + 32T^{2} \)
5 \( 1 - 8.82T + 3.12e3T^{2} \)
7 \( 1 + 254.T + 1.68e4T^{2} \)
11 \( 1 + 561.T + 1.61e5T^{2} \)
13 \( 1 - 848.T + 3.71e5T^{2} \)
17 \( 1 - 300.T + 1.41e6T^{2} \)
19 \( 1 + 2.66e3T + 2.47e6T^{2} \)
23 \( 1 + 4.06e3T + 6.43e6T^{2} \)
29 \( 1 + 1.50e3T + 2.05e7T^{2} \)
31 \( 1 + 2.25e3T + 2.86e7T^{2} \)
37 \( 1 - 1.15e3T + 6.93e7T^{2} \)
41 \( 1 - 1.49e4T + 1.15e8T^{2} \)
43 \( 1 + 1.51e4T + 1.47e8T^{2} \)
47 \( 1 - 2.23e4T + 2.29e8T^{2} \)
53 \( 1 + 1.72e4T + 4.18e8T^{2} \)
59 \( 1 - 6.89e3T + 7.14e8T^{2} \)
61 \( 1 - 7.71e3T + 8.44e8T^{2} \)
67 \( 1 - 1.86e4T + 1.35e9T^{2} \)
71 \( 1 - 5.21e4T + 1.80e9T^{2} \)
73 \( 1 + 3.11e4T + 2.07e9T^{2} \)
79 \( 1 - 1.18e4T + 3.07e9T^{2} \)
83 \( 1 - 1.03e4T + 3.93e9T^{2} \)
89 \( 1 - 1.38e5T + 5.58e9T^{2} \)
97 \( 1 + 1.15e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07272834823905445515192579233, −9.355131716887805425469868757511, −8.516897828735649255858402191982, −7.75093057664405774037357131695, −6.31504359724590330480940623310, −5.71187093856853367373779182243, −4.09056759774443755755586562261, −3.49783954118079055042084102254, −2.26308956429854046601034780685, −0.39728120920257106300905731770, 0.39728120920257106300905731770, 2.26308956429854046601034780685, 3.49783954118079055042084102254, 4.09056759774443755755586562261, 5.71187093856853367373779182243, 6.31504359724590330480940623310, 7.75093057664405774037357131695, 8.516897828735649255858402191982, 9.355131716887805425469868757511, 10.07272834823905445515192579233

Graph of the $Z$-function along the critical line