Properties

Label 2-471-1.1-c5-0-129
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.37·2-s + 9·3-s + 38.1·4-s + 42.0·5-s + 75.3·6-s − 124.·7-s + 51.3·8-s + 81·9-s + 352.·10-s − 286.·11-s + 343.·12-s − 996.·13-s − 1.04e3·14-s + 378.·15-s − 789.·16-s − 530.·17-s + 678.·18-s − 968.·19-s + 1.60e3·20-s − 1.12e3·21-s − 2.40e3·22-s − 63.5·23-s + 462.·24-s − 1.35e3·25-s − 8.34e3·26-s + 729·27-s − 4.74e3·28-s + ⋯
L(s)  = 1  + 1.48·2-s + 0.577·3-s + 1.19·4-s + 0.752·5-s + 0.854·6-s − 0.960·7-s + 0.283·8-s + 0.333·9-s + 1.11·10-s − 0.714·11-s + 0.688·12-s − 1.63·13-s − 1.42·14-s + 0.434·15-s − 0.771·16-s − 0.445·17-s + 0.493·18-s − 0.615·19-s + 0.896·20-s − 0.554·21-s − 1.05·22-s − 0.0250·23-s + 0.163·24-s − 0.433·25-s − 2.42·26-s + 0.192·27-s − 1.14·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
157 \( 1 - 2.46e4T \)
good2 \( 1 - 8.37T + 32T^{2} \)
5 \( 1 - 42.0T + 3.12e3T^{2} \)
7 \( 1 + 124.T + 1.68e4T^{2} \)
11 \( 1 + 286.T + 1.61e5T^{2} \)
13 \( 1 + 996.T + 3.71e5T^{2} \)
17 \( 1 + 530.T + 1.41e6T^{2} \)
19 \( 1 + 968.T + 2.47e6T^{2} \)
23 \( 1 + 63.5T + 6.43e6T^{2} \)
29 \( 1 + 3.87e3T + 2.05e7T^{2} \)
31 \( 1 - 6.65e3T + 2.86e7T^{2} \)
37 \( 1 + 4.81e3T + 6.93e7T^{2} \)
41 \( 1 - 1.34e4T + 1.15e8T^{2} \)
43 \( 1 - 2.16e3T + 1.47e8T^{2} \)
47 \( 1 - 2.51e4T + 2.29e8T^{2} \)
53 \( 1 + 3.50e3T + 4.18e8T^{2} \)
59 \( 1 + 3.05e4T + 7.14e8T^{2} \)
61 \( 1 - 4.57e4T + 8.44e8T^{2} \)
67 \( 1 + 1.94e4T + 1.35e9T^{2} \)
71 \( 1 + 4.12e4T + 1.80e9T^{2} \)
73 \( 1 - 4.54e4T + 2.07e9T^{2} \)
79 \( 1 - 2.84e4T + 3.07e9T^{2} \)
83 \( 1 - 2.97e4T + 3.93e9T^{2} \)
89 \( 1 + 1.28e4T + 5.58e9T^{2} \)
97 \( 1 - 9.56e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.772098267560115135805584041789, −9.101312144111718010890406861137, −7.65914079233318588036272209279, −6.70235503347361284081915296642, −5.84946461515908432080842230197, −4.92565051296659281825147024604, −3.94925637460384894764177003762, −2.71834238070038930663585846920, −2.27603638125959835106531203179, 0, 2.27603638125959835106531203179, 2.71834238070038930663585846920, 3.94925637460384894764177003762, 4.92565051296659281825147024604, 5.84946461515908432080842230197, 6.70235503347361284081915296642, 7.65914079233318588036272209279, 9.101312144111718010890406861137, 9.772098267560115135805584041789

Graph of the $Z$-function along the critical line