Properties

Label 2-471-1.1-c5-0-124
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.38·2-s + 9·3-s − 3.02·4-s + 53.0·5-s + 48.4·6-s + 107.·7-s − 188.·8-s + 81·9-s + 285.·10-s − 580.·11-s − 27.1·12-s + 15.9·13-s + 577.·14-s + 477.·15-s − 918.·16-s − 1.77e3·17-s + 436.·18-s − 2.16e3·19-s − 160.·20-s + 965.·21-s − 3.12e3·22-s − 3.07e3·23-s − 1.69e3·24-s − 309.·25-s + 85.8·26-s + 729·27-s − 324.·28-s + ⋯
L(s)  = 1  + 0.951·2-s + 0.577·3-s − 0.0944·4-s + 0.949·5-s + 0.549·6-s + 0.827·7-s − 1.04·8-s + 0.333·9-s + 0.903·10-s − 1.44·11-s − 0.0545·12-s + 0.0261·13-s + 0.787·14-s + 0.547·15-s − 0.896·16-s − 1.49·17-s + 0.317·18-s − 1.37·19-s − 0.0896·20-s + 0.477·21-s − 1.37·22-s − 1.21·23-s − 0.601·24-s − 0.0991·25-s + 0.0248·26-s + 0.192·27-s − 0.0781·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
157 \( 1 - 2.46e4T \)
good2 \( 1 - 5.38T + 32T^{2} \)
5 \( 1 - 53.0T + 3.12e3T^{2} \)
7 \( 1 - 107.T + 1.68e4T^{2} \)
11 \( 1 + 580.T + 1.61e5T^{2} \)
13 \( 1 - 15.9T + 3.71e5T^{2} \)
17 \( 1 + 1.77e3T + 1.41e6T^{2} \)
19 \( 1 + 2.16e3T + 2.47e6T^{2} \)
23 \( 1 + 3.07e3T + 6.43e6T^{2} \)
29 \( 1 - 4.64e3T + 2.05e7T^{2} \)
31 \( 1 - 3.50e3T + 2.86e7T^{2} \)
37 \( 1 + 3.47e3T + 6.93e7T^{2} \)
41 \( 1 + 6.33e3T + 1.15e8T^{2} \)
43 \( 1 + 4.69e3T + 1.47e8T^{2} \)
47 \( 1 + 5.70e3T + 2.29e8T^{2} \)
53 \( 1 - 3.68e4T + 4.18e8T^{2} \)
59 \( 1 - 3.17e4T + 7.14e8T^{2} \)
61 \( 1 - 2.56e3T + 8.44e8T^{2} \)
67 \( 1 + 4.84e3T + 1.35e9T^{2} \)
71 \( 1 - 4.63e3T + 1.80e9T^{2} \)
73 \( 1 + 6.85e4T + 2.07e9T^{2} \)
79 \( 1 - 7.17e3T + 3.07e9T^{2} \)
83 \( 1 + 1.86e4T + 3.93e9T^{2} \)
89 \( 1 + 3.11e4T + 5.58e9T^{2} \)
97 \( 1 + 5.50e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.893410251357394262868552465151, −8.622112802917193506645128653653, −8.264778515312799066973082699746, −6.73911380523929156972983847561, −5.78697441368077864978975574942, −4.86392518077740486023523268456, −4.14086270564889470873417322608, −2.62829791860656420959413898542, −2.00545127850753001664244749892, 0, 2.00545127850753001664244749892, 2.62829791860656420959413898542, 4.14086270564889470873417322608, 4.86392518077740486023523268456, 5.78697441368077864978975574942, 6.73911380523929156972983847561, 8.264778515312799066973082699746, 8.622112802917193506645128653653, 9.893410251357394262868552465151

Graph of the $Z$-function along the critical line