Properties

Label 2-471-1.1-c5-0-121
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.07·2-s + 9·3-s + 18.1·4-s − 24.1·5-s + 63.7·6-s + 54.4·7-s − 98.3·8-s + 81·9-s − 171.·10-s + 458.·11-s + 163.·12-s − 906.·13-s + 385.·14-s − 217.·15-s − 1.27e3·16-s − 1.56e3·17-s + 573.·18-s + 289.·19-s − 437.·20-s + 490.·21-s + 3.24e3·22-s + 1.43e3·23-s − 884.·24-s − 2.54e3·25-s − 6.41e3·26-s + 729·27-s + 986.·28-s + ⋯
L(s)  = 1  + 1.25·2-s + 0.577·3-s + 0.565·4-s − 0.432·5-s + 0.722·6-s + 0.420·7-s − 0.543·8-s + 0.333·9-s − 0.541·10-s + 1.14·11-s + 0.326·12-s − 1.48·13-s + 0.525·14-s − 0.249·15-s − 1.24·16-s − 1.31·17-s + 0.417·18-s + 0.183·19-s − 0.244·20-s + 0.242·21-s + 1.43·22-s + 0.564·23-s − 0.313·24-s − 0.812·25-s − 1.86·26-s + 0.192·27-s + 0.237·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
157 \( 1 - 2.46e4T \)
good2 \( 1 - 7.07T + 32T^{2} \)
5 \( 1 + 24.1T + 3.12e3T^{2} \)
7 \( 1 - 54.4T + 1.68e4T^{2} \)
11 \( 1 - 458.T + 1.61e5T^{2} \)
13 \( 1 + 906.T + 3.71e5T^{2} \)
17 \( 1 + 1.56e3T + 1.41e6T^{2} \)
19 \( 1 - 289.T + 2.47e6T^{2} \)
23 \( 1 - 1.43e3T + 6.43e6T^{2} \)
29 \( 1 + 5.90e3T + 2.05e7T^{2} \)
31 \( 1 + 3.94e3T + 2.86e7T^{2} \)
37 \( 1 - 9.19e3T + 6.93e7T^{2} \)
41 \( 1 - 234.T + 1.15e8T^{2} \)
43 \( 1 - 2.22e4T + 1.47e8T^{2} \)
47 \( 1 + 1.23e4T + 2.29e8T^{2} \)
53 \( 1 + 3.77e3T + 4.18e8T^{2} \)
59 \( 1 + 1.66e4T + 7.14e8T^{2} \)
61 \( 1 + 4.56e4T + 8.44e8T^{2} \)
67 \( 1 + 7.74e3T + 1.35e9T^{2} \)
71 \( 1 + 1.97e4T + 1.80e9T^{2} \)
73 \( 1 + 2.27e4T + 2.07e9T^{2} \)
79 \( 1 + 6.16e4T + 3.07e9T^{2} \)
83 \( 1 + 7.69e4T + 3.93e9T^{2} \)
89 \( 1 - 1.08e5T + 5.58e9T^{2} \)
97 \( 1 + 8.37e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.472322072117590061055963784202, −9.071318416206927586365792701842, −7.73830080380965225157820580450, −6.94541799712085141998301636871, −5.82560985561637189775701905034, −4.60479912016887482054314775027, −4.13822859319326527066845174493, −2.99194758531410592883272888799, −1.89509080353999540825610818664, 0, 1.89509080353999540825610818664, 2.99194758531410592883272888799, 4.13822859319326527066845174493, 4.60479912016887482054314775027, 5.82560985561637189775701905034, 6.94541799712085141998301636871, 7.73830080380965225157820580450, 9.071318416206927586365792701842, 9.472322072117590061055963784202

Graph of the $Z$-function along the critical line