Properties

Label 2-471-1.1-c5-0-103
Degree $2$
Conductor $471$
Sign $-1$
Analytic cond. $75.5407$
Root an. cond. $8.69141$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.86·2-s + 9·3-s − 8.29·4-s + 70.0·5-s − 43.8·6-s − 29.0·7-s + 196.·8-s + 81·9-s − 340.·10-s − 79.3·11-s − 74.6·12-s − 311.·13-s + 141.·14-s + 630.·15-s − 689.·16-s + 161.·17-s − 394.·18-s + 1.13e3·19-s − 580.·20-s − 261.·21-s + 386.·22-s − 3.91e3·23-s + 1.76e3·24-s + 1.77e3·25-s + 1.51e3·26-s + 729·27-s + 240.·28-s + ⋯
L(s)  = 1  − 0.860·2-s + 0.577·3-s − 0.259·4-s + 1.25·5-s − 0.496·6-s − 0.223·7-s + 1.08·8-s + 0.333·9-s − 1.07·10-s − 0.197·11-s − 0.149·12-s − 0.510·13-s + 0.192·14-s + 0.723·15-s − 0.673·16-s + 0.135·17-s − 0.286·18-s + 0.718·19-s − 0.324·20-s − 0.129·21-s + 0.170·22-s − 1.54·23-s + 0.625·24-s + 0.569·25-s + 0.439·26-s + 0.192·27-s + 0.0580·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 471 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(471\)    =    \(3 \cdot 157\)
Sign: $-1$
Analytic conductor: \(75.5407\)
Root analytic conductor: \(8.69141\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 471,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
157 \( 1 - 2.46e4T \)
good2 \( 1 + 4.86T + 32T^{2} \)
5 \( 1 - 70.0T + 3.12e3T^{2} \)
7 \( 1 + 29.0T + 1.68e4T^{2} \)
11 \( 1 + 79.3T + 1.61e5T^{2} \)
13 \( 1 + 311.T + 3.71e5T^{2} \)
17 \( 1 - 161.T + 1.41e6T^{2} \)
19 \( 1 - 1.13e3T + 2.47e6T^{2} \)
23 \( 1 + 3.91e3T + 6.43e6T^{2} \)
29 \( 1 + 5.36e3T + 2.05e7T^{2} \)
31 \( 1 + 5.91e3T + 2.86e7T^{2} \)
37 \( 1 - 2.65e3T + 6.93e7T^{2} \)
41 \( 1 - 7.26e3T + 1.15e8T^{2} \)
43 \( 1 - 1.29e4T + 1.47e8T^{2} \)
47 \( 1 + 1.34e4T + 2.29e8T^{2} \)
53 \( 1 + 1.74e4T + 4.18e8T^{2} \)
59 \( 1 + 1.25e4T + 7.14e8T^{2} \)
61 \( 1 - 1.19e4T + 8.44e8T^{2} \)
67 \( 1 - 2.78e4T + 1.35e9T^{2} \)
71 \( 1 - 6.89e4T + 1.80e9T^{2} \)
73 \( 1 + 3.92e4T + 2.07e9T^{2} \)
79 \( 1 + 5.70e4T + 3.07e9T^{2} \)
83 \( 1 + 6.44e3T + 3.93e9T^{2} \)
89 \( 1 - 2.05e4T + 5.58e9T^{2} \)
97 \( 1 - 2.50e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.617988814550884191795805014763, −9.198475038135192815616037464472, −8.044168007883015923996752185152, −7.36983862857223873683623257456, −6.05279464073822091387282693906, −5.09038123778317525604936411495, −3.79004659391334195431935100500, −2.33027042096206619034497771944, −1.47534864030260405243087101177, 0, 1.47534864030260405243087101177, 2.33027042096206619034497771944, 3.79004659391334195431935100500, 5.09038123778317525604936411495, 6.05279464073822091387282693906, 7.36983862857223873683623257456, 8.044168007883015923996752185152, 9.198475038135192815616037464472, 9.617988814550884191795805014763

Graph of the $Z$-function along the critical line