Properties

Label 2-4704-1.1-c1-0-39
Degree $2$
Conductor $4704$
Sign $-1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4.13·5-s + 9-s + 2.29·11-s + 2.43·13-s + 4.13·15-s − 3.71·17-s − 7.84·19-s + 1.70·23-s + 12.0·25-s − 27-s + 3.25·29-s + 1.80·31-s − 2.29·33-s − 5.65·37-s − 2.43·39-s + 6.81·41-s − 5.44·43-s − 4.13·45-s + 13.2·47-s + 3.71·51-s + 9.09·53-s − 9.50·55-s + 7.84·57-s + 14.9·59-s − 2.16·61-s − 10.0·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.84·5-s + 0.333·9-s + 0.693·11-s + 0.674·13-s + 1.06·15-s − 0.900·17-s − 1.80·19-s + 0.354·23-s + 2.41·25-s − 0.192·27-s + 0.603·29-s + 0.324·31-s − 0.400·33-s − 0.929·37-s − 0.389·39-s + 1.06·41-s − 0.829·43-s − 0.616·45-s + 1.93·47-s + 0.519·51-s + 1.24·53-s − 1.28·55-s + 1.03·57-s + 1.94·59-s − 0.277·61-s − 1.24·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4704} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 + 4.13T + 5T^{2} \)
11 \( 1 - 2.29T + 11T^{2} \)
13 \( 1 - 2.43T + 13T^{2} \)
17 \( 1 + 3.71T + 17T^{2} \)
19 \( 1 + 7.84T + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 - 3.25T + 29T^{2} \)
31 \( 1 - 1.80T + 31T^{2} \)
37 \( 1 + 5.65T + 37T^{2} \)
41 \( 1 - 6.81T + 41T^{2} \)
43 \( 1 + 5.44T + 43T^{2} \)
47 \( 1 - 13.2T + 47T^{2} \)
53 \( 1 - 9.09T + 53T^{2} \)
59 \( 1 - 14.9T + 59T^{2} \)
61 \( 1 + 2.16T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 + 3.95T + 71T^{2} \)
73 \( 1 + 9.68T + 73T^{2} \)
79 \( 1 - 10.0T + 79T^{2} \)
83 \( 1 - 11.6T + 83T^{2} \)
89 \( 1 + 12.7T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.980004633888582074426851658492, −7.02252415232435706781907318725, −6.72719772289483096719055610987, −5.83586865997401887889973996270, −4.68861457733874838492265999835, −4.16144128739567739925400062613, −3.69497521373706047905796645382, −2.47315718102522343361682387539, −1.04292125661916978039098255758, 0, 1.04292125661916978039098255758, 2.47315718102522343361682387539, 3.69497521373706047905796645382, 4.16144128739567739925400062613, 4.68861457733874838492265999835, 5.83586865997401887889973996270, 6.72719772289483096719055610987, 7.02252415232435706781907318725, 7.980004633888582074426851658492

Graph of the $Z$-function along the critical line