L(s) = 1 | + 2-s + 4-s + 8-s − 2·11-s − 13-s + 16-s − 2·22-s + 25-s − 26-s + 32-s − 2·44-s − 2·47-s − 49-s + 50-s − 52-s + 2·59-s − 2·61-s + 64-s + 2·71-s + 2·83-s − 2·88-s − 2·94-s − 98-s + 100-s − 104-s + 2·118-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s − 2·11-s − 13-s + 16-s − 2·22-s + 25-s − 26-s + 32-s − 2·44-s − 2·47-s − 49-s + 50-s − 52-s + 2·59-s − 2·61-s + 64-s + 2·71-s + 2·83-s − 2·88-s − 2·94-s − 98-s + 100-s − 104-s + 2·118-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.422599735\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.422599735\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( ( 1 + T )^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( ( 1 - T )^{2} \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( ( 1 - T )^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 - T )^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28846195747301840136862002126, −10.53724025155482616035248949595, −9.777035977822234359307775531736, −8.206659658586756605920355131080, −7.50845784289009217052883502173, −6.51247412427874016263825988718, −5.25120987737984177912380869488, −4.80384839605694580965260113375, −3.22421568095521731360694808713, −2.29098313964472879524943890970,
2.29098313964472879524943890970, 3.22421568095521731360694808713, 4.80384839605694580965260113375, 5.25120987737984177912380869488, 6.51247412427874016263825988718, 7.50845784289009217052883502173, 8.206659658586756605920355131080, 9.777035977822234359307775531736, 10.53724025155482616035248949595, 11.28846195747301840136862002126