| L(s) = 1 | − i·2-s + i·3-s − 4-s + (0.5 − 0.866i)5-s + 6-s + (0.866 + 0.5i)7-s + i·8-s − 9-s + (−0.866 − 0.5i)10-s − i·12-s + 13-s + (0.5 − 0.866i)14-s + (0.866 + 0.5i)15-s + 16-s + (−0.5 − 0.866i)17-s + i·18-s + ⋯ |
| L(s) = 1 | − i·2-s + i·3-s − 4-s + (0.5 − 0.866i)5-s + 6-s + (0.866 + 0.5i)7-s + i·8-s − 9-s + (−0.866 − 0.5i)10-s − i·12-s + 13-s + (0.5 − 0.866i)14-s + (0.866 + 0.5i)15-s + 16-s + (−0.5 − 0.866i)17-s + i·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8923374008\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8923374008\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + iT \) |
| 3 | \( 1 - iT \) |
| 13 | \( 1 - T \) |
| good | 5 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 2T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16688433979955126944673717641, −10.37630357525246783452432444798, −9.316209910997288121918666633286, −8.834880705389647005037880285094, −8.163609719527793505069659401211, −6.02140905357371454043173957251, −5.01236435653071880247840796160, −4.51066512011942038098555008189, −3.15051719790142554736042063170, −1.71033156098746437453562623413,
1.70887845151641075662937554124, 3.48801885920929654025838917310, 4.93627024091727876389586172556, 6.14333227930428994273728151702, 6.66226876672320456552302961374, 7.55140104358783586782057715343, 8.381789757758974918815691018768, 9.162786856038371518174802120468, 10.74798611220440157952077821979, 11.00244950233681462022343243895