| L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−1.22 − 1.22i)5-s + (0.707 − 0.707i)8-s + (−1.49 − 0.866i)10-s + (−0.5 + 0.866i)13-s + (0.500 − 0.866i)16-s + (0.965 + 1.67i)17-s + (−1.67 − 0.448i)20-s + 1.99i·25-s + (−0.258 + 0.965i)26-s + (−0.448 − 0.258i)29-s + (0.258 − 0.965i)32-s + (1.36 + 1.36i)34-s + (0.5 − 0.133i)37-s + ⋯ |
| L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−1.22 − 1.22i)5-s + (0.707 − 0.707i)8-s + (−1.49 − 0.866i)10-s + (−0.5 + 0.866i)13-s + (0.500 − 0.866i)16-s + (0.965 + 1.67i)17-s + (−1.67 − 0.448i)20-s + 1.99i·25-s + (−0.258 + 0.965i)26-s + (−0.448 − 0.258i)29-s + (0.258 − 0.965i)32-s + (1.36 + 1.36i)34-s + (0.5 − 0.133i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.545 + 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.545 + 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.268786497\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.268786497\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (1.22 + 1.22i)T + iT^{2} \) |
| 7 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.965 - 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.448 + 0.258i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-0.5 + 0.133i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 - 0.517iT - T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.50078388935458461288470185886, −10.44959702507117397983633154294, −9.352188438424827608365128296277, −8.222731408447999371365190432701, −7.49899509588398537433577771859, −6.24740690389713154586582958628, −5.11494234378403492992173262899, −4.28373941085487304598572801077, −3.50475593461122742915986499654, −1.60796657142899555613497392353,
2.80090024452565737098268707264, 3.38716822873934351229709467686, 4.62118637118897144266460594796, 5.69195689276885355326473141435, 6.98223273965434054330010150435, 7.41894312673355941377076505696, 8.212610527362203779691531886824, 9.890073493747303673107994895866, 10.80144092127551519690279959217, 11.60108786542567031636502373411