| L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−1.22 + 1.22i)5-s + (−0.707 − 0.707i)8-s + (−1.49 − 0.866i)10-s + (−0.5 + 0.866i)13-s + (0.500 − 0.866i)16-s + (0.258 + 0.448i)17-s + (0.448 − 1.67i)20-s − 1.99i·25-s + (−0.965 − 0.258i)26-s + (1.67 + 0.965i)29-s + (0.965 + 0.258i)32-s + (−0.366 + 0.366i)34-s + (0.5 + 1.86i)37-s + ⋯ |
| L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−1.22 + 1.22i)5-s + (−0.707 − 0.707i)8-s + (−1.49 − 0.866i)10-s + (−0.5 + 0.866i)13-s + (0.500 − 0.866i)16-s + (0.258 + 0.448i)17-s + (0.448 − 1.67i)20-s − 1.99i·25-s + (−0.965 − 0.258i)26-s + (1.67 + 0.965i)29-s + (0.965 + 0.258i)32-s + (−0.366 + 0.366i)34-s + (0.5 + 1.86i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.918 - 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.918 - 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6635764196\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6635764196\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.258 - 0.965i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| good | 5 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.258 - 0.448i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-1.67 - 0.965i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (-0.5 - 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 41 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + 1.93iT - T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83856684594369918621598599477, −10.75412016901591413951219253664, −9.823493494584027824941221059513, −8.567543361446601179439289912423, −7.85492557032490232628541188985, −6.91557887759875743327631571435, −6.47434842501836238853343755249, −4.93257593728763114415825579104, −3.95194803535709756617643671174, −2.98191306128880075412118192744,
0.841174426196479551750983974367, 2.79188106071294506308134056415, 4.06093059798509731247237750447, 4.77175819767595790785267465039, 5.74156829892804597679595121412, 7.53618739665680960246933781059, 8.306928634603320384466526805222, 9.118541237220975394296854086800, 10.06040573325668452982898705079, 11.04369002459883656594845679056