| L(s) = 1 | + (1.58 − 0.704i)3-s + (−0.321 + 1.20i)5-s + (1.14 + 1.14i)7-s + (2.00 − 2.23i)9-s + (1.64 + 0.441i)11-s + (0.484 − 3.57i)13-s + (0.337 + 2.12i)15-s + (3.21 + 5.56i)17-s + (−6.42 − 1.72i)19-s + (2.62 + 1.00i)21-s + 6.83·23-s + (2.99 + 1.72i)25-s + (1.60 − 4.94i)27-s + (−4.45 + 2.57i)29-s + (3.17 + 0.850i)31-s + ⋯ |
| L(s) = 1 | + (0.913 − 0.407i)3-s + (−0.143 + 0.536i)5-s + (0.433 + 0.433i)7-s + (0.668 − 0.743i)9-s + (0.497 + 0.133i)11-s + (0.134 − 0.990i)13-s + (0.0871 + 0.548i)15-s + (0.779 + 1.34i)17-s + (−1.47 − 0.394i)19-s + (0.572 + 0.219i)21-s + 1.42·23-s + (0.598 + 0.345i)25-s + (0.308 − 0.951i)27-s + (−0.828 + 0.478i)29-s + (0.570 + 0.152i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0331i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0331i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.99940 - 0.0331811i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.99940 - 0.0331811i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.58 + 0.704i)T \) |
| 13 | \( 1 + (-0.484 + 3.57i)T \) |
| good | 5 | \( 1 + (0.321 - 1.20i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.14 - 1.14i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1.64 - 0.441i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-3.21 - 5.56i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.42 + 1.72i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 6.83T + 23T^{2} \) |
| 29 | \( 1 + (4.45 - 2.57i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.17 - 0.850i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.96 - 1.33i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (8.92 + 8.92i)T + 41iT^{2} \) |
| 43 | \( 1 + 8.50iT - 43T^{2} \) |
| 47 | \( 1 + (-0.158 - 0.591i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 6.07iT - 53T^{2} \) |
| 59 | \( 1 + (-0.757 - 2.82i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 6.58T + 61T^{2} \) |
| 67 | \( 1 + (-0.201 + 0.201i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.86 - 10.6i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 + (7.05 - 12.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.95 - 0.522i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-1.07 - 4.01i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.59 + 3.59i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82232005390366756935416282333, −10.27431077476134260931825305548, −8.813842894295338637942536618309, −8.543050924908584876353478481218, −7.37516940836908928081740616398, −6.62846804780018057584330306319, −5.38801394093913558440332852655, −3.89439237156650396991003263818, −2.95114562466341682857498281848, −1.62056449157431761427609639350,
1.51869421713071493016977119904, 3.06627407364741113271574654121, 4.30875318248821280527669825002, 4.90447620283322483938527401539, 6.57416914708029710257186320262, 7.54661624083291162035162274824, 8.495711022501168519168979833233, 9.130562689775487092869443925812, 9.968746128032451267760833190609, 11.01013532552899601807105708185