| L(s) = 1 | + (0.706 − 1.58i)3-s + (0.956 − 3.56i)5-s + (3.66 + 3.66i)7-s + (−2.00 − 2.23i)9-s + (3.54 + 0.949i)11-s + (1.38 + 3.32i)13-s + (−4.96 − 4.03i)15-s + (−1.54 − 2.67i)17-s + (0.0965 + 0.0258i)19-s + (8.38 − 3.20i)21-s − 4.53·23-s + (−7.49 − 4.32i)25-s + (−4.94 + 1.59i)27-s + (−5.03 + 2.90i)29-s + (−4.10 − 1.10i)31-s + ⋯ |
| L(s) = 1 | + (0.407 − 0.913i)3-s + (0.427 − 1.59i)5-s + (1.38 + 1.38i)7-s + (−0.667 − 0.744i)9-s + (1.06 + 0.286i)11-s + (0.384 + 0.923i)13-s + (−1.28 − 1.04i)15-s + (−0.374 − 0.649i)17-s + (0.0221 + 0.00593i)19-s + (1.83 − 0.700i)21-s − 0.944·23-s + (−1.49 − 0.865i)25-s + (−0.951 + 0.306i)27-s + (−0.935 + 0.540i)29-s + (−0.737 − 0.197i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 + 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.62453 - 1.08986i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.62453 - 1.08986i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.706 + 1.58i)T \) |
| 13 | \( 1 + (-1.38 - 3.32i)T \) |
| good | 5 | \( 1 + (-0.956 + 3.56i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-3.66 - 3.66i)T + 7iT^{2} \) |
| 11 | \( 1 + (-3.54 - 0.949i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.54 + 2.67i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.0965 - 0.0258i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 4.53T + 23T^{2} \) |
| 29 | \( 1 + (5.03 - 2.90i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.10 + 1.10i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (4.69 - 1.25i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-0.971 - 0.971i)T + 41iT^{2} \) |
| 43 | \( 1 + 8.59iT - 43T^{2} \) |
| 47 | \( 1 + (-0.442 - 1.64i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 5.85iT - 53T^{2} \) |
| 59 | \( 1 + (-2.54 - 9.51i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 6.74T + 61T^{2} \) |
| 67 | \( 1 + (3.02 - 3.02i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.87 + 10.7i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.26 + 1.26i)T + 73iT^{2} \) |
| 79 | \( 1 + (1.68 - 2.91i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.28 + 0.344i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (3.45 + 12.9i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.70 - 1.70i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33505589060818083465447991599, −9.348064410717160264023882851863, −8.928604681094170974854001779650, −8.468333490096490284716655315747, −7.34078177584297309425443624939, −6.02608930574229060396927135077, −5.26237296202783041332432214086, −4.18165152051032976752114345068, −2.05184601618049653260199922124, −1.50674522210321958089480213148,
1.93668731698029900354984878757, 3.51903965631018841336890659996, 4.06942254387154420688595770978, 5.49791811186534098377919603170, 6.62848003521104606431246763815, 7.65475992479255517544822702558, 8.383310419937108841051665607998, 9.719900102445991433332709317601, 10.43751882301952296197871445050, 11.01534150278490619830895351865