| L(s) = 1 | + (1.61 − 0.613i)3-s + (2.41 + 1.39i)5-s + (−1.00 + 0.582i)7-s + (2.24 − 1.98i)9-s + (0.716 − 0.413i)11-s + (−0.360 − 3.58i)13-s + (4.76 + 0.775i)15-s + 0.0570·17-s + 8.44i·19-s + (−1.27 + 1.56i)21-s + (−1.18 + 2.04i)23-s + (1.37 + 2.38i)25-s + (2.42 − 4.59i)27-s + (−2.67 − 4.62i)29-s + (0.351 + 0.203i)31-s + ⋯ |
| L(s) = 1 | + (0.935 − 0.354i)3-s + (1.07 + 0.622i)5-s + (−0.381 + 0.219i)7-s + (0.749 − 0.662i)9-s + (0.216 − 0.124i)11-s + (−0.0999 − 0.994i)13-s + (1.22 + 0.200i)15-s + 0.0138·17-s + 1.93i·19-s + (−0.278 + 0.340i)21-s + (−0.246 + 0.426i)23-s + (0.275 + 0.477i)25-s + (0.465 − 0.884i)27-s + (−0.495 − 0.858i)29-s + (0.0631 + 0.0364i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0483i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.18448 - 0.0528602i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.18448 - 0.0528602i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.61 + 0.613i)T \) |
| 13 | \( 1 + (0.360 + 3.58i)T \) |
| good | 5 | \( 1 + (-2.41 - 1.39i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1.00 - 0.582i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.716 + 0.413i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.0570T + 17T^{2} \) |
| 19 | \( 1 - 8.44iT - 19T^{2} \) |
| 23 | \( 1 + (1.18 - 2.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.67 + 4.62i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.351 - 0.203i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5.42iT - 37T^{2} \) |
| 41 | \( 1 + (7.53 + 4.35i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.13 - 8.90i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.56 + 4.36i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2.12T + 53T^{2} \) |
| 59 | \( 1 + (9.68 + 5.58i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.225 + 0.389i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (8.02 + 4.63i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.15iT - 71T^{2} \) |
| 73 | \( 1 - 8.45iT - 73T^{2} \) |
| 79 | \( 1 + (-4.40 - 7.62i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9.12 - 5.26i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 5.24iT - 89T^{2} \) |
| 97 | \( 1 + (0.0761 - 0.0439i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74229733222836604691869210240, −9.916275180222177799087275185927, −9.433724486765141065213410091284, −8.239137833652171473148406397837, −7.48800506977586971105714563156, −6.28232185684019966418834903519, −5.69842058641874235821404837896, −3.83365232297210965098798147332, −2.83940541225189305339744554406, −1.74013833100634219985121928711,
1.68328858476747133062995784067, 2.85971292154606428507946727050, 4.28487874688746470910708100954, 5.12220945402584628907138259999, 6.50790416895742257676597288799, 7.34528796498294039411684778631, 8.825362250990704413009682762495, 9.100906041866586187907808264551, 9.902317648063267010068581383123, 10.78061616176067952404677914343