L(s) = 1 | + (−1.05 − 1.37i)3-s + (0.154 + 0.0889i)5-s + (1.97 − 1.13i)7-s + (−0.781 + 2.89i)9-s + (3.52 − 2.03i)11-s + (−3.23 − 1.59i)13-s + (−0.0399 − 0.305i)15-s + 3.07·17-s − 5.12i·19-s + (−3.63 − 1.51i)21-s + (−1.90 + 3.29i)23-s + (−2.48 − 4.30i)25-s + (4.80 − 1.97i)27-s + (−1.54 − 2.68i)29-s + (−2.83 − 1.63i)31-s + ⋯ |
L(s) = 1 | + (−0.608 − 0.793i)3-s + (0.0688 + 0.0397i)5-s + (0.744 − 0.429i)7-s + (−0.260 + 0.965i)9-s + (1.06 − 0.613i)11-s + (−0.896 − 0.443i)13-s + (−0.0103 − 0.0788i)15-s + 0.746·17-s − 1.17i·19-s + (−0.794 − 0.329i)21-s + (−0.396 + 0.686i)23-s + (−0.496 − 0.860i)25-s + (0.924 − 0.380i)27-s + (−0.287 − 0.498i)29-s + (−0.510 − 0.294i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0245 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0245 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.828180 - 0.848781i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.828180 - 0.848781i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.05 + 1.37i)T \) |
| 13 | \( 1 + (3.23 + 1.59i)T \) |
good | 5 | \( 1 + (-0.154 - 0.0889i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.97 + 1.13i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.52 + 2.03i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 3.07T + 17T^{2} \) |
| 19 | \( 1 + 5.12iT - 19T^{2} \) |
| 23 | \( 1 + (1.90 - 3.29i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.54 + 2.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.83 + 1.63i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 9.78iT - 37T^{2} \) |
| 41 | \( 1 + (0.887 + 0.512i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.98 - 5.17i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-8.53 + 4.92i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 4.76T + 53T^{2} \) |
| 59 | \( 1 + (-8.49 - 4.90i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.84 - 4.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.80 + 1.04i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 13.5iT - 71T^{2} \) |
| 73 | \( 1 - 1.70iT - 73T^{2} \) |
| 79 | \( 1 + (1.49 + 2.58i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.49 + 4.90i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 16.6iT - 89T^{2} \) |
| 97 | \( 1 + (-4.90 + 2.82i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06414590169451949772281236249, −10.05063810143114149384350374479, −8.930318438223523410409997074279, −7.78313193079064338854638688496, −7.25354849886671485830774026555, −6.09728566545039120101353219000, −5.26212477449628424573226409905, −4.04049747404132805710575167908, −2.32369126202035919963696604421, −0.846561739101029329435707235010,
1.72537758015853580523005072445, 3.58435527133159610505691532087, 4.61643580184386328986915838140, 5.44830973557852998021162492366, 6.47044149964587602659188003841, 7.59528137576282107041346836516, 8.779496244664010814113087756771, 9.610345219594549829176948964460, 10.26067989706161079010332067533, 11.35980334385250597011291932677