| L(s) = 1 | + (−1.73 + 0.0398i)3-s + (−3.64 − 2.10i)5-s + (2.60 − 1.50i)7-s + (2.99 − 0.138i)9-s + (−1.65 + 0.953i)11-s + (−1.12 + 3.42i)13-s + (6.39 + 3.49i)15-s − 3.93·17-s + 1.37i·19-s + (−4.45 + 2.71i)21-s + (−2.04 + 3.54i)23-s + (6.36 + 11.0i)25-s + (−5.18 + 0.358i)27-s + (4.04 + 7.01i)29-s + (−8.05 − 4.65i)31-s + ⋯ |
| L(s) = 1 | + (−0.999 + 0.0230i)3-s + (−1.63 − 0.941i)5-s + (0.985 − 0.569i)7-s + (0.998 − 0.0460i)9-s + (−0.497 + 0.287i)11-s + (−0.310 + 0.950i)13-s + (1.65 + 0.903i)15-s − 0.953·17-s + 0.315i·19-s + (−0.972 + 0.591i)21-s + (−0.426 + 0.739i)23-s + (1.27 + 2.20i)25-s + (−0.997 + 0.0690i)27-s + (0.752 + 1.30i)29-s + (−1.44 − 0.835i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.415 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.137578 + 0.214015i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.137578 + 0.214015i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.73 - 0.0398i)T \) |
| 13 | \( 1 + (1.12 - 3.42i)T \) |
| good | 5 | \( 1 + (3.64 + 2.10i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.60 + 1.50i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.65 - 0.953i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 3.93T + 17T^{2} \) |
| 19 | \( 1 - 1.37iT - 19T^{2} \) |
| 23 | \( 1 + (2.04 - 3.54i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.04 - 7.01i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (8.05 + 4.65i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.12iT - 37T^{2} \) |
| 41 | \( 1 + (-3.14 - 1.81i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.278 - 0.482i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.89 + 2.24i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 0.138T + 53T^{2} \) |
| 59 | \( 1 + (-2.78 - 1.60i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.34 + 4.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (8.84 + 5.10i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.13iT - 71T^{2} \) |
| 73 | \( 1 - 11.4iT - 73T^{2} \) |
| 79 | \( 1 + (-2.66 - 4.60i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (11.6 - 6.72i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 13.5iT - 89T^{2} \) |
| 97 | \( 1 + (12.1 - 7.00i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22038371502179221567168767640, −10.94343602887132920595714551494, −9.528428511675673323722809505556, −8.440065137134219413530569042447, −7.58001712603113808620434687096, −6.96890251283103934417389418864, −5.32978658383604974310846628099, −4.53594435720283526398933038638, −4.00277120472402022235769809176, −1.44998957575625054905241456800,
0.18704056065806499085198249930, 2.57654197592242314769853573873, 4.05046414179641897923010421859, 4.92847465919522540089125261182, 6.05513208076511261254010204104, 7.19815943022925460679484664479, 7.81115426683559229352536769963, 8.698284444972060794665503199364, 10.42923318888154837143260278443, 10.83969751058718865539559707373