L(s) = 1 | − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s + 9-s + 3.26·11-s − 12-s − 2.73·13-s + 2·14-s + 16-s + 4.93·17-s − 18-s + 4.93·19-s + 2·21-s − 3.26·22-s + 0.521·23-s + 24-s + 2.73·26-s − 27-s − 2·28-s + 0.521·29-s − 31-s − 32-s − 3.26·33-s − 4.93·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 0.333·9-s + 0.983·11-s − 0.288·12-s − 0.759·13-s + 0.534·14-s + 0.250·16-s + 1.19·17-s − 0.235·18-s + 1.13·19-s + 0.436·21-s − 0.695·22-s + 0.108·23-s + 0.204·24-s + 0.537·26-s − 0.192·27-s − 0.377·28-s + 0.0968·29-s − 0.179·31-s − 0.176·32-s − 0.567·33-s − 0.845·34-s + ⋯ |
Λ(s)=(=(4650s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4650s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.012772077 |
L(21) |
≈ |
1.012772077 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
| 31 | 1+T |
good | 7 | 1+2T+7T2 |
| 11 | 1−3.26T+11T2 |
| 13 | 1+2.73T+13T2 |
| 17 | 1−4.93T+17T2 |
| 19 | 1−4.93T+19T2 |
| 23 | 1−0.521T+23T2 |
| 29 | 1−0.521T+29T2 |
| 37 | 1−10.8T+37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+8.82T+43T2 |
| 47 | 1+4.93T+47T2 |
| 53 | 1+13.3T+53T2 |
| 59 | 1−9.34T+59T2 |
| 61 | 1+9.75T+61T2 |
| 67 | 1−13.5T+67T2 |
| 71 | 1−5.56T+71T2 |
| 73 | 1−3.04T+73T2 |
| 79 | 1+6.41T+79T2 |
| 83 | 1−1.36T+83T2 |
| 89 | 1+11.8T+89T2 |
| 97 | 1−7.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.209064497264286700334475362011, −7.59174604127695001783029055667, −6.85302392465612692636374816777, −6.29572385855561449179275244115, −5.53520038971741542371087004209, −4.70707677864288064361336871533, −3.58507823811645053884986134088, −2.91931212057375102680141612124, −1.60293390913198760054675371725, −0.66831876971305387295147282183,
0.66831876971305387295147282183, 1.60293390913198760054675371725, 2.91931212057375102680141612124, 3.58507823811645053884986134088, 4.70707677864288064361336871533, 5.53520038971741542371087004209, 6.29572385855561449179275244115, 6.85302392465612692636374816777, 7.59174604127695001783029055667, 8.209064497264286700334475362011