Properties

Label 2-4650-1.1-c1-0-13
Degree $2$
Conductor $4650$
Sign $1$
Analytic cond. $37.1304$
Root an. cond. $6.09347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s + 9-s + 3.26·11-s − 12-s − 2.73·13-s + 2·14-s + 16-s + 4.93·17-s − 18-s + 4.93·19-s + 2·21-s − 3.26·22-s + 0.521·23-s + 24-s + 2.73·26-s − 27-s − 2·28-s + 0.521·29-s − 31-s − 32-s − 3.26·33-s − 4.93·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 0.333·9-s + 0.983·11-s − 0.288·12-s − 0.759·13-s + 0.534·14-s + 0.250·16-s + 1.19·17-s − 0.235·18-s + 1.13·19-s + 0.436·21-s − 0.695·22-s + 0.108·23-s + 0.204·24-s + 0.537·26-s − 0.192·27-s − 0.377·28-s + 0.0968·29-s − 0.179·31-s − 0.176·32-s − 0.567·33-s − 0.845·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4650\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(37.1304\)
Root analytic conductor: \(6.09347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.012772077\)
\(L(\frac12)\) \(\approx\) \(1.012772077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
31 \( 1 + T \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 3.26T + 11T^{2} \)
13 \( 1 + 2.73T + 13T^{2} \)
17 \( 1 - 4.93T + 17T^{2} \)
19 \( 1 - 4.93T + 19T^{2} \)
23 \( 1 - 0.521T + 23T^{2} \)
29 \( 1 - 0.521T + 29T^{2} \)
37 \( 1 - 10.8T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 8.82T + 43T^{2} \)
47 \( 1 + 4.93T + 47T^{2} \)
53 \( 1 + 13.3T + 53T^{2} \)
59 \( 1 - 9.34T + 59T^{2} \)
61 \( 1 + 9.75T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 - 5.56T + 71T^{2} \)
73 \( 1 - 3.04T + 73T^{2} \)
79 \( 1 + 6.41T + 79T^{2} \)
83 \( 1 - 1.36T + 83T^{2} \)
89 \( 1 + 11.8T + 89T^{2} \)
97 \( 1 - 7.26T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.209064497264286700334475362011, −7.59174604127695001783029055667, −6.85302392465612692636374816777, −6.29572385855561449179275244115, −5.53520038971741542371087004209, −4.70707677864288064361336871533, −3.58507823811645053884986134088, −2.91931212057375102680141612124, −1.60293390913198760054675371725, −0.66831876971305387295147282183, 0.66831876971305387295147282183, 1.60293390913198760054675371725, 2.91931212057375102680141612124, 3.58507823811645053884986134088, 4.70707677864288064361336871533, 5.53520038971741542371087004209, 6.29572385855561449179275244115, 6.85302392465612692636374816777, 7.59174604127695001783029055667, 8.209064497264286700334475362011

Graph of the $Z$-function along the critical line