L(s) = 1 | + (1.58 − 1.14i)2-s + (−0.104 + 0.994i)3-s + (0.873 − 2.68i)4-s + (−0.5 + 0.866i)5-s + (0.978 + 1.69i)6-s + (−1.10 − 3.39i)8-s + (−0.978 − 0.207i)9-s + (0.204 + 1.94i)10-s + (2.58 + 1.14i)12-s + (−0.809 − 0.587i)15-s + (−3.36 − 2.44i)16-s + (−0.669 + 0.743i)17-s + (−1.78 + 0.795i)18-s + (−0.190 − 0.0850i)19-s + (1.89 + 2.10i)20-s + ⋯ |
L(s) = 1 | + (1.58 − 1.14i)2-s + (−0.104 + 0.994i)3-s + (0.873 − 2.68i)4-s + (−0.5 + 0.866i)5-s + (0.978 + 1.69i)6-s + (−1.10 − 3.39i)8-s + (−0.978 − 0.207i)9-s + (0.204 + 1.94i)10-s + (2.58 + 1.14i)12-s + (−0.809 − 0.587i)15-s + (−3.36 − 2.44i)16-s + (−0.669 + 0.743i)17-s + (−1.78 + 0.795i)18-s + (−0.190 − 0.0850i)19-s + (1.89 + 2.10i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.645938622\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.645938622\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.104 - 0.994i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
good | 2 | \( 1 + (-1.58 + 1.14i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 11 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 17 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 19 | \( 1 + (0.190 + 0.0850i)T + (0.669 + 0.743i)T^{2} \) |
| 23 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 43 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 47 | \( 1 + (1.08 + 0.786i)T + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.58 - 0.336i)T + (0.913 + 0.406i)T^{2} \) |
| 59 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 61 | \( 1 - 1.82T + T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 73 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (0.139 - 0.155i)T + (-0.104 - 0.994i)T^{2} \) |
| 83 | \( 1 + (0.139 + 1.33i)T + (-0.978 + 0.207i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30145937449428419510759138334, −10.51084791208460051079135568873, −10.03272968203044817609501089645, −8.806340262205371895131893214657, −6.99426960417673635958891303785, −6.02859973681540381863740226866, −5.09505852012124105691851996524, −4.03076614863049817693286838980, −3.46579053368725549075210533157, −2.32113414567593505922990885568,
2.46879601323785015930959832518, 3.86350197024384300628364228715, 4.90442813395917164895037239582, 5.68990683386446654336576740095, 6.70944954809322348130375846666, 7.41419763043861717411486988454, 8.233777866368959228250218388100, 8.956110639096674668815073116246, 11.22845596830022499484331001051, 11.78118336648139734673152139406