L(s) = 1 | + (−0.150 − 0.150i)2-s + (0.591 − 1.62i)3-s − 1.95i·4-s + (0.684 + 2.12i)5-s + (−0.333 + 0.155i)6-s + (−0.387 + 0.387i)7-s + (−0.594 + 0.594i)8-s + (−2.30 − 1.92i)9-s + (0.217 − 0.422i)10-s − 5.94i·11-s + (−3.18 − 1.15i)12-s + (−2.75 − 2.75i)13-s + 0.116·14-s + (3.87 + 0.145i)15-s − 3.73·16-s + (4.13 + 4.13i)17-s + ⋯ |
L(s) = 1 | + (−0.106 − 0.106i)2-s + (0.341 − 0.939i)3-s − 0.977i·4-s + (0.306 + 0.952i)5-s + (−0.136 + 0.0636i)6-s + (−0.146 + 0.146i)7-s + (−0.210 + 0.210i)8-s + (−0.766 − 0.642i)9-s + (0.0686 − 0.133i)10-s − 1.79i·11-s + (−0.918 − 0.333i)12-s + (−0.762 − 0.762i)13-s + 0.0311·14-s + (0.999 + 0.0375i)15-s − 0.932·16-s + (1.00 + 1.00i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.557 + 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.557 + 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.629673 - 1.18099i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.629673 - 1.18099i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.591 + 1.62i)T \) |
| 5 | \( 1 + (-0.684 - 2.12i)T \) |
| 31 | \( 1 + T \) |
good | 2 | \( 1 + (0.150 + 0.150i)T + 2iT^{2} \) |
| 7 | \( 1 + (0.387 - 0.387i)T - 7iT^{2} \) |
| 11 | \( 1 + 5.94iT - 11T^{2} \) |
| 13 | \( 1 + (2.75 + 2.75i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.13 - 4.13i)T + 17iT^{2} \) |
| 19 | \( 1 + 1.21iT - 19T^{2} \) |
| 23 | \( 1 + (-6.27 + 6.27i)T - 23iT^{2} \) |
| 29 | \( 1 + 2.83T + 29T^{2} \) |
| 37 | \( 1 + (-3.46 + 3.46i)T - 37iT^{2} \) |
| 41 | \( 1 - 6.88iT - 41T^{2} \) |
| 43 | \( 1 + (4.32 + 4.32i)T + 43iT^{2} \) |
| 47 | \( 1 + (-3.93 - 3.93i)T + 47iT^{2} \) |
| 53 | \( 1 + (-4.51 + 4.51i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.65T + 59T^{2} \) |
| 61 | \( 1 - 0.744T + 61T^{2} \) |
| 67 | \( 1 + (-5.51 + 5.51i)T - 67iT^{2} \) |
| 71 | \( 1 - 4.91iT - 71T^{2} \) |
| 73 | \( 1 + (-9.51 - 9.51i)T + 73iT^{2} \) |
| 79 | \( 1 + 3.31iT - 79T^{2} \) |
| 83 | \( 1 + (4.12 - 4.12i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.87T + 89T^{2} \) |
| 97 | \( 1 + (-5.32 + 5.32i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83186704275749667369293919223, −9.930626409205057125806077868500, −8.899036001887244604179792235418, −8.019951382702062191265160046765, −6.89276251926674929773128463263, −6.06719380208397656109171909710, −5.48242278473872746015097426851, −3.30647120763197370976273634839, −2.45306789476102640941240376740, −0.829354877259097860391857111216,
2.20604981849998535712522935914, 3.59478988474007648165484587460, 4.62792422450025167777585146500, 5.25312522945877134142654137435, 7.11721382658004879601092309529, 7.69265291389697483609648601175, 8.913071074280224945145846362750, 9.516426600481145434774016013902, 9.992538920774312603659585185186, 11.57180210067856902217458354127