L(s) = 1 | + (0.523 + 0.523i)2-s + (−0.695 + 1.58i)3-s − 1.45i·4-s + (−2.20 + 0.349i)5-s + (−1.19 + 0.466i)6-s + (2.00 − 2.00i)7-s + (1.80 − 1.80i)8-s + (−2.03 − 2.20i)9-s + (−1.34 − 0.973i)10-s − 2.51i·11-s + (2.30 + 1.00i)12-s + (−1.36 − 1.36i)13-s + 2.09·14-s + (0.981 − 3.74i)15-s − 1.00·16-s + (−2.74 − 2.74i)17-s + ⋯ |
L(s) = 1 | + (0.370 + 0.370i)2-s + (−0.401 + 0.915i)3-s − 0.725i·4-s + (−0.987 + 0.156i)5-s + (−0.488 + 0.190i)6-s + (0.757 − 0.757i)7-s + (0.639 − 0.639i)8-s + (−0.677 − 0.735i)9-s + (−0.423 − 0.307i)10-s − 0.756i·11-s + (0.664 + 0.291i)12-s + (−0.378 − 0.378i)13-s + 0.560·14-s + (0.253 − 0.967i)15-s − 0.251·16-s + (−0.666 − 0.666i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.689 + 0.724i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.689 + 0.724i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.04732 - 0.448899i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.04732 - 0.448899i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.695 - 1.58i)T \) |
| 5 | \( 1 + (2.20 - 0.349i)T \) |
| 31 | \( 1 + T \) |
good | 2 | \( 1 + (-0.523 - 0.523i)T + 2iT^{2} \) |
| 7 | \( 1 + (-2.00 + 2.00i)T - 7iT^{2} \) |
| 11 | \( 1 + 2.51iT - 11T^{2} \) |
| 13 | \( 1 + (1.36 + 1.36i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.74 + 2.74i)T + 17iT^{2} \) |
| 19 | \( 1 - 4.33iT - 19T^{2} \) |
| 23 | \( 1 + (-6.46 + 6.46i)T - 23iT^{2} \) |
| 29 | \( 1 - 5.35T + 29T^{2} \) |
| 37 | \( 1 + (1.27 - 1.27i)T - 37iT^{2} \) |
| 41 | \( 1 - 0.543iT - 41T^{2} \) |
| 43 | \( 1 + (4.32 + 4.32i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.52 - 1.52i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.26 - 6.26i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.16T + 59T^{2} \) |
| 61 | \( 1 + 10.5T + 61T^{2} \) |
| 67 | \( 1 + (-7.77 + 7.77i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.13iT - 71T^{2} \) |
| 73 | \( 1 + (6.43 + 6.43i)T + 73iT^{2} \) |
| 79 | \( 1 - 7.24iT - 79T^{2} \) |
| 83 | \( 1 + (5.53 - 5.53i)T - 83iT^{2} \) |
| 89 | \( 1 - 11.2T + 89T^{2} \) |
| 97 | \( 1 + (-10.2 + 10.2i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68943199710082341138737749868, −10.51429097874389545004192087353, −9.165232869173023276322991875098, −8.173636436430315749241741831203, −7.08327840840557960015830520012, −6.15111179147533093526835566304, −4.84716606545955067059406621610, −4.53068788291348199938905008388, −3.24903398988228511069189559417, −0.68041925794521437924429395995,
1.81312883410395144527202511397, 2.99639280130992465640652730773, 4.52712772149292623359104961325, 5.13653109111043458788498826480, 6.81721024104153248324878781546, 7.46222106429616084285533012690, 8.316266803925396290440574897185, 9.009523031910384566712580452242, 10.84836553822104656467445533468, 11.56938122840324918076377637111