Properties

Label 2-465-1.1-c1-0-7
Degree $2$
Conductor $465$
Sign $-1$
Analytic cond. $3.71304$
Root an. cond. $1.92692$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s − 3-s + 0.999·4-s − 5-s + 1.73·6-s − 1.26·7-s + 1.73·8-s + 9-s + 1.73·10-s + 5.46·11-s − 0.999·12-s − 4.73·13-s + 2.19·14-s + 15-s − 5·16-s + 5.46·17-s − 1.73·18-s − 1.46·19-s − 0.999·20-s + 1.26·21-s − 9.46·22-s − 7.46·23-s − 1.73·24-s + 25-s + 8.19·26-s − 27-s − 1.26·28-s + ⋯
L(s)  = 1  − 1.22·2-s − 0.577·3-s + 0.499·4-s − 0.447·5-s + 0.707·6-s − 0.479·7-s + 0.612·8-s + 0.333·9-s + 0.547·10-s + 1.64·11-s − 0.288·12-s − 1.31·13-s + 0.586·14-s + 0.258·15-s − 1.25·16-s + 1.32·17-s − 0.408·18-s − 0.335·19-s − 0.223·20-s + 0.276·21-s − 2.01·22-s − 1.55·23-s − 0.353·24-s + 0.200·25-s + 1.60·26-s − 0.192·27-s − 0.239·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(465\)    =    \(3 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(3.71304\)
Root analytic conductor: \(1.92692\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 465,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 + T \)
good2 \( 1 + 1.73T + 2T^{2} \)
7 \( 1 + 1.26T + 7T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 + 4.73T + 13T^{2} \)
17 \( 1 - 5.46T + 17T^{2} \)
19 \( 1 + 1.46T + 19T^{2} \)
23 \( 1 + 7.46T + 23T^{2} \)
29 \( 1 + 2.73T + 29T^{2} \)
37 \( 1 + 3.26T + 37T^{2} \)
41 \( 1 + 3.46T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 6T + 47T^{2} \)
53 \( 1 + 8.39T + 53T^{2} \)
59 \( 1 + 1.80T + 59T^{2} \)
61 \( 1 - 10.3T + 61T^{2} \)
67 \( 1 - 0.196T + 67T^{2} \)
71 \( 1 + 14.1T + 71T^{2} \)
73 \( 1 + 11.6T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 - 8.53T + 83T^{2} \)
89 \( 1 - 10.7T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15804034468201081491465804556, −9.854586141575514782469273280567, −8.931787304260799311407262609655, −7.88154516517883126710708604625, −7.11969238303714121053718129153, −6.18704710676757480373093682864, −4.77544166930372631864507208177, −3.65319233184203824627886448868, −1.61937606310933530196373578619, 0, 1.61937606310933530196373578619, 3.65319233184203824627886448868, 4.77544166930372631864507208177, 6.18704710676757480373093682864, 7.11969238303714121053718129153, 7.88154516517883126710708604625, 8.931787304260799311407262609655, 9.854586141575514782469273280567, 10.15804034468201081491465804556

Graph of the $Z$-function along the critical line