Properties

Label 2-4640-1.1-c1-0-9
Degree $2$
Conductor $4640$
Sign $1$
Analytic cond. $37.0505$
Root an. cond. $6.08691$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·3-s − 5-s − 2.85·7-s − 2.61·9-s − 3.23·11-s − 5.09·13-s − 0.618·15-s − 3.61·17-s + 2.76·19-s − 1.76·21-s + 5.85·23-s + 25-s − 3.47·27-s + 29-s − 1.61·31-s − 2.00·33-s + 2.85·35-s + 9.23·37-s − 3.14·39-s − 3.70·41-s − 7.61·43-s + 2.61·45-s − 8·47-s + 1.14·49-s − 2.23·51-s + 9.32·53-s + 3.23·55-s + ⋯
L(s)  = 1  + 0.356·3-s − 0.447·5-s − 1.07·7-s − 0.872·9-s − 0.975·11-s − 1.41·13-s − 0.159·15-s − 0.877·17-s + 0.634·19-s − 0.384·21-s + 1.22·23-s + 0.200·25-s − 0.668·27-s + 0.185·29-s − 0.290·31-s − 0.348·33-s + 0.482·35-s + 1.51·37-s − 0.503·39-s − 0.579·41-s − 1.16·43-s + 0.390·45-s − 1.16·47-s + 0.163·49-s − 0.313·51-s + 1.28·53-s + 0.436·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4640\)    =    \(2^{5} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(37.0505\)
Root analytic conductor: \(6.08691\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7205198556\)
\(L(\frac12)\) \(\approx\) \(0.7205198556\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 - 0.618T + 3T^{2} \)
7 \( 1 + 2.85T + 7T^{2} \)
11 \( 1 + 3.23T + 11T^{2} \)
13 \( 1 + 5.09T + 13T^{2} \)
17 \( 1 + 3.61T + 17T^{2} \)
19 \( 1 - 2.76T + 19T^{2} \)
23 \( 1 - 5.85T + 23T^{2} \)
31 \( 1 + 1.61T + 31T^{2} \)
37 \( 1 - 9.23T + 37T^{2} \)
41 \( 1 + 3.70T + 41T^{2} \)
43 \( 1 + 7.61T + 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 - 9.32T + 53T^{2} \)
59 \( 1 + 9.38T + 59T^{2} \)
61 \( 1 - 2.14T + 61T^{2} \)
67 \( 1 + 2.47T + 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 - 1.90T + 73T^{2} \)
79 \( 1 + 2.90T + 79T^{2} \)
83 \( 1 - 15.7T + 83T^{2} \)
89 \( 1 + 1.70T + 89T^{2} \)
97 \( 1 - 8.79T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.257909003371320681937299431989, −7.61899310432646710402783165390, −6.94537000473268447033706961348, −6.23394395621112211322025120020, −5.21350721456265352209923151200, −4.74865931687511623892018378853, −3.48608530734305423702668303049, −2.92237715625787114604272229517, −2.27875871819941325928168641245, −0.42649675330621668308101257907, 0.42649675330621668308101257907, 2.27875871819941325928168641245, 2.92237715625787114604272229517, 3.48608530734305423702668303049, 4.74865931687511623892018378853, 5.21350721456265352209923151200, 6.23394395621112211322025120020, 6.94537000473268447033706961348, 7.61899310432646710402783165390, 8.257909003371320681937299431989

Graph of the $Z$-function along the critical line