L(s) = 1 | − 2·5-s + 2.82·7-s + 4.24·11-s + 6·13-s + 4.24·19-s + 8.48·23-s − 25-s − 2·29-s − 5.65·31-s − 5.65·35-s + 6·37-s − 6·41-s + 4.24·43-s + 1.00·49-s + 2·53-s − 8.48·55-s + 1.41·59-s + 6·61-s − 12·65-s − 12.7·67-s − 8.48·71-s − 12·73-s + 12·77-s + 5.65·79-s + 4.24·83-s + 12·89-s + 16.9·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.06·7-s + 1.27·11-s + 1.66·13-s + 0.973·19-s + 1.76·23-s − 0.200·25-s − 0.371·29-s − 1.01·31-s − 0.956·35-s + 0.986·37-s − 0.937·41-s + 0.646·43-s + 0.142·49-s + 0.274·53-s − 1.14·55-s + 0.184·59-s + 0.768·61-s − 1.48·65-s − 1.55·67-s − 1.00·71-s − 1.40·73-s + 1.36·77-s + 0.636·79-s + 0.465·83-s + 1.27·89-s + 1.77·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.417910039\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.417910039\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + 2T + 5T^{2} \) |
| 7 | \( 1 - 2.82T + 7T^{2} \) |
| 11 | \( 1 - 4.24T + 11T^{2} \) |
| 13 | \( 1 - 6T + 13T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 4.24T + 19T^{2} \) |
| 23 | \( 1 - 8.48T + 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + 5.65T + 31T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 - 4.24T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 - 1.41T + 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + 12.7T + 67T^{2} \) |
| 71 | \( 1 + 8.48T + 71T^{2} \) |
| 73 | \( 1 + 12T + 73T^{2} \) |
| 79 | \( 1 - 5.65T + 79T^{2} \) |
| 83 | \( 1 - 4.24T + 83T^{2} \) |
| 89 | \( 1 - 12T + 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.349444429624400362971182332018, −7.58714524218973146144740967845, −7.03869804662483498604701426730, −6.13011726398830841645193036098, −5.35191480352664701037590867759, −4.45226709758704579845417856741, −3.80878500304498434124066446376, −3.15596263630828736567863014413, −1.62146359742865250715272264316, −0.982511811595873951636118131319,
0.982511811595873951636118131319, 1.62146359742865250715272264316, 3.15596263630828736567863014413, 3.80878500304498434124066446376, 4.45226709758704579845417856741, 5.35191480352664701037590867759, 6.13011726398830841645193036098, 7.03869804662483498604701426730, 7.58714524218973146144740967845, 8.349444429624400362971182332018