Properties

Label 2-4608-1.1-c1-0-30
Degree $2$
Conductor $4608$
Sign $1$
Analytic cond. $36.7950$
Root an. cond. $6.06589$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2.82·7-s + 4.24·11-s + 6·13-s + 4.24·19-s + 8.48·23-s − 25-s − 2·29-s − 5.65·31-s − 5.65·35-s + 6·37-s − 6·41-s + 4.24·43-s + 1.00·49-s + 2·53-s − 8.48·55-s + 1.41·59-s + 6·61-s − 12·65-s − 12.7·67-s − 8.48·71-s − 12·73-s + 12·77-s + 5.65·79-s + 4.24·83-s + 12·89-s + 16.9·91-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.06·7-s + 1.27·11-s + 1.66·13-s + 0.973·19-s + 1.76·23-s − 0.200·25-s − 0.371·29-s − 1.01·31-s − 0.956·35-s + 0.986·37-s − 0.937·41-s + 0.646·43-s + 0.142·49-s + 0.274·53-s − 1.14·55-s + 0.184·59-s + 0.768·61-s − 1.48·65-s − 1.55·67-s − 1.00·71-s − 1.40·73-s + 1.36·77-s + 0.636·79-s + 0.465·83-s + 1.27·89-s + 1.77·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4608\)    =    \(2^{9} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(36.7950\)
Root analytic conductor: \(6.06589\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4608,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.417910039\)
\(L(\frac12)\) \(\approx\) \(2.417910039\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 - 2.82T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 - 6T + 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 4.24T + 19T^{2} \)
23 \( 1 - 8.48T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4.24T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 1.41T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 + 8.48T + 71T^{2} \)
73 \( 1 + 12T + 73T^{2} \)
79 \( 1 - 5.65T + 79T^{2} \)
83 \( 1 - 4.24T + 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.349444429624400362971182332018, −7.58714524218973146144740967845, −7.03869804662483498604701426730, −6.13011726398830841645193036098, −5.35191480352664701037590867759, −4.45226709758704579845417856741, −3.80878500304498434124066446376, −3.15596263630828736567863014413, −1.62146359742865250715272264316, −0.982511811595873951636118131319, 0.982511811595873951636118131319, 1.62146359742865250715272264316, 3.15596263630828736567863014413, 3.80878500304498434124066446376, 4.45226709758704579845417856741, 5.35191480352664701037590867759, 6.13011726398830841645193036098, 7.03869804662483498604701426730, 7.58714524218973146144740967845, 8.349444429624400362971182332018

Graph of the $Z$-function along the critical line