L(s) = 1 | + 3i·3-s − 2i·7-s − 6·9-s − i·13-s + 6·21-s − i·23-s − 9i·27-s + 3·29-s + 3·31-s − 8i·37-s + 3·39-s + 3·41-s + 2i·43-s − 11i·47-s + 3·49-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − 0.755i·7-s − 2·9-s − 0.277i·13-s + 1.30·21-s − 0.208i·23-s − 1.73i·27-s + 0.557·29-s + 0.538·31-s − 1.31i·37-s + 0.480·39-s + 0.468·41-s + 0.304i·43-s − 1.60i·47-s + 0.428·49-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
4600
= 23⋅52⋅23
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
36.7311 |
Root analytic conductor: |
6.06062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4600(4049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4600, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.731287754 |
L(21) |
≈ |
1.731287754 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+iT |
good | 3 | 1−3iT−3T2 |
| 7 | 1+2iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1+19T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−3T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1−3T+41T2 |
| 43 | 1−2iT−43T2 |
| 47 | 1+11iT−47T2 |
| 53 | 1−14iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+4iT−67T2 |
| 71 | 1−7T+71T2 |
| 73 | 1−9iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+4iT−83T2 |
| 89 | 1−2T+89T2 |
| 97 | 1−18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.662486920376952591533446037602, −7.85205156031396279168738253681, −7.02404820238043737778499722383, −6.04178741119857415136783117697, −5.34321068353149304637587292023, −4.57194838248218024187446697513, −4.01931324585700801304247440971, −3.34227735495195328919822928698, −2.40255080554156027422688666389, −0.69843220659036803517831161922,
0.76528491901308749605670720691, 1.76183632493648659148647100219, 2.49210468537196315234766297334, 3.27879554403493564280515281657, 4.61060177125585013665299574561, 5.51064474057715498178683223258, 6.22224997531827549575503713729, 6.70273101460077679967451138801, 7.45314201601922274236887331474, 8.149097666441831610179014039050