L(s) = 1 | + i·7-s + 3·9-s − 6·11-s + 2i·13-s − 3i·17-s + 6·19-s − i·23-s − 3·29-s − 3·31-s + i·37-s + 9·41-s + 8i·43-s + 4i·47-s + 6·49-s − i·53-s + ⋯ |
L(s) = 1 | + 0.377i·7-s + 9-s − 1.80·11-s + 0.554i·13-s − 0.727i·17-s + 1.37·19-s − 0.208i·23-s − 0.557·29-s − 0.538·31-s + 0.164i·37-s + 1.40·41-s + 1.21i·43-s + 0.583i·47-s + 0.857·49-s − 0.137i·53-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
4600
= 23⋅52⋅23
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
36.7311 |
Root analytic conductor: |
6.06062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4600(4049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4600, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.633242703 |
L(21) |
≈ |
1.633242703 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+iT |
good | 3 | 1−3T2 |
| 7 | 1−iT−7T2 |
| 11 | 1+6T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1−6T+19T2 |
| 29 | 1+3T+29T2 |
| 31 | 1+3T+31T2 |
| 37 | 1−iT−37T2 |
| 41 | 1−9T+41T2 |
| 43 | 1−8iT−43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1+iT−53T2 |
| 59 | 1+T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+7iT−67T2 |
| 71 | 1+5T+71T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−11iT−83T2 |
| 89 | 1+4T+89T2 |
| 97 | 1−6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.332500620763886995163268329317, −7.50760568985551690456235254807, −7.32455680407539074097898174167, −6.23306749822150298562826978274, −5.35202882263727020787012978441, −4.90217461302165383951306066785, −3.96414004902763441188966460948, −2.91103777254490309407546115060, −2.23419283449759969299113854842, −0.992050436900914754116202054484,
0.52597335362696331861488673489, 1.73684536868741167577433724392, 2.75557830537893932966884538548, 3.63685219384694221354548819077, 4.43718168230733038584775330490, 5.42755694932790245043144064116, 5.70561057142759781889338646595, 7.05327383951325524737312396510, 7.46721978945700448306441662723, 7.974684030038371362661499655364