L(s) = 1 | + 3·3-s + 2·7-s + 6·9-s − 13-s + 6·21-s − 23-s + 9·27-s − 3·29-s + 3·31-s + 8·37-s − 3·39-s + 3·41-s + 2·43-s + 11·47-s − 3·49-s + 14·53-s − 8·59-s − 4·61-s + 12·63-s + 4·67-s − 3·69-s + 7·71-s + 9·73-s + 9·81-s − 4·83-s − 9·87-s − 2·89-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.755·7-s + 2·9-s − 0.277·13-s + 1.30·21-s − 0.208·23-s + 1.73·27-s − 0.557·29-s + 0.538·31-s + 1.31·37-s − 0.480·39-s + 0.468·41-s + 0.304·43-s + 1.60·47-s − 3/7·49-s + 1.92·53-s − 1.04·59-s − 0.512·61-s + 1.51·63-s + 0.488·67-s − 0.361·69-s + 0.830·71-s + 1.05·73-s + 81-s − 0.439·83-s − 0.964·87-s − 0.211·89-s + ⋯ |
Λ(s)=(=(4600s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4600s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.316143919 |
L(21) |
≈ |
4.316143919 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1−pT+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1−11T+pT2 |
| 53 | 1−14T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−7T+pT2 |
| 73 | 1−9T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1+18T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.285574047889435899285775099263, −7.72080508917808983337092272200, −7.27420693336935451926548382562, −6.24709568035458347850164186333, −5.21601831815009121569251901191, −4.30937835957950367596720771655, −3.78023121707294719609388975674, −2.71063570111023727220455874686, −2.20807718970593446330580525082, −1.14993359895366307790634424705,
1.14993359895366307790634424705, 2.20807718970593446330580525082, 2.71063570111023727220455874686, 3.78023121707294719609388975674, 4.30937835957950367596720771655, 5.21601831815009121569251901191, 6.24709568035458347850164186333, 7.27420693336935451926548382562, 7.72080508917808983337092272200, 8.285574047889435899285775099263