Properties

Label 2-4600-1.1-c1-0-58
Degree $2$
Conductor $4600$
Sign $1$
Analytic cond. $36.7311$
Root an. cond. $6.06062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·7-s + 6·9-s − 13-s + 6·21-s − 23-s + 9·27-s − 3·29-s + 3·31-s + 8·37-s − 3·39-s + 3·41-s + 2·43-s + 11·47-s − 3·49-s + 14·53-s − 8·59-s − 4·61-s + 12·63-s + 4·67-s − 3·69-s + 7·71-s + 9·73-s + 9·81-s − 4·83-s − 9·87-s − 2·89-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.755·7-s + 2·9-s − 0.277·13-s + 1.30·21-s − 0.208·23-s + 1.73·27-s − 0.557·29-s + 0.538·31-s + 1.31·37-s − 0.480·39-s + 0.468·41-s + 0.304·43-s + 1.60·47-s − 3/7·49-s + 1.92·53-s − 1.04·59-s − 0.512·61-s + 1.51·63-s + 0.488·67-s − 0.361·69-s + 0.830·71-s + 1.05·73-s + 81-s − 0.439·83-s − 0.964·87-s − 0.211·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4600\)    =    \(2^{3} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(36.7311\)
Root analytic conductor: \(6.06062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.316143919\)
\(L(\frac12)\) \(\approx\) \(4.316143919\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.285574047889435899285775099263, −7.72080508917808983337092272200, −7.27420693336935451926548382562, −6.24709568035458347850164186333, −5.21601831815009121569251901191, −4.30937835957950367596720771655, −3.78023121707294719609388975674, −2.71063570111023727220455874686, −2.20807718970593446330580525082, −1.14993359895366307790634424705, 1.14993359895366307790634424705, 2.20807718970593446330580525082, 2.71063570111023727220455874686, 3.78023121707294719609388975674, 4.30937835957950367596720771655, 5.21601831815009121569251901191, 6.24709568035458347850164186333, 7.27420693336935451926548382562, 7.72080508917808983337092272200, 8.285574047889435899285775099263

Graph of the $Z$-function along the critical line