Properties

Label 2-45e2-1.1-c3-0-10
Degree $2$
Conductor $2025$
Sign $1$
Analytic cond. $119.478$
Root an. cond. $10.9306$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.97·2-s + 0.860·4-s − 24.9·7-s − 21.2·8-s − 63.2·11-s − 90.4·13-s − 74.3·14-s − 70.1·16-s − 10.2·17-s + 24.7·19-s − 188.·22-s − 2.69·23-s − 269.·26-s − 21.4·28-s − 109.·29-s − 69.4·31-s − 38.7·32-s − 30.4·34-s − 23.0·37-s + 73.6·38-s + 266.·41-s + 470.·43-s − 54.4·44-s − 8.01·46-s + 437.·47-s + 280.·49-s − 77.8·52-s + ⋯
L(s)  = 1  + 1.05·2-s + 0.107·4-s − 1.34·7-s − 0.939·8-s − 1.73·11-s − 1.93·13-s − 1.41·14-s − 1.09·16-s − 0.145·17-s + 0.298·19-s − 1.82·22-s − 0.0244·23-s − 2.03·26-s − 0.144·28-s − 0.702·29-s − 0.402·31-s − 0.214·32-s − 0.153·34-s − 0.102·37-s + 0.314·38-s + 1.01·41-s + 1.66·43-s − 0.186·44-s − 0.0256·46-s + 1.35·47-s + 0.817·49-s − 0.207·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2025 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2025\)    =    \(3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(119.478\)
Root analytic conductor: \(10.9306\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2025,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4741769506\)
\(L(\frac12)\) \(\approx\) \(0.4741769506\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 2.97T + 8T^{2} \)
7 \( 1 + 24.9T + 343T^{2} \)
11 \( 1 + 63.2T + 1.33e3T^{2} \)
13 \( 1 + 90.4T + 2.19e3T^{2} \)
17 \( 1 + 10.2T + 4.91e3T^{2} \)
19 \( 1 - 24.7T + 6.85e3T^{2} \)
23 \( 1 + 2.69T + 1.21e4T^{2} \)
29 \( 1 + 109.T + 2.43e4T^{2} \)
31 \( 1 + 69.4T + 2.97e4T^{2} \)
37 \( 1 + 23.0T + 5.06e4T^{2} \)
41 \( 1 - 266.T + 6.89e4T^{2} \)
43 \( 1 - 470.T + 7.95e4T^{2} \)
47 \( 1 - 437.T + 1.03e5T^{2} \)
53 \( 1 + 114.T + 1.48e5T^{2} \)
59 \( 1 + 474.T + 2.05e5T^{2} \)
61 \( 1 + 333.T + 2.26e5T^{2} \)
67 \( 1 + 76.1T + 3.00e5T^{2} \)
71 \( 1 + 658.T + 3.57e5T^{2} \)
73 \( 1 - 549.T + 3.89e5T^{2} \)
79 \( 1 + 171.T + 4.93e5T^{2} \)
83 \( 1 + 332.T + 5.71e5T^{2} \)
89 \( 1 + 621.T + 7.04e5T^{2} \)
97 \( 1 + 1.51e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.022512280839115699593549104087, −7.66723475958326017391939791488, −7.25269199436005215281284680298, −6.11687900279083771683512313997, −5.49328477508169279973259059508, −4.81234308902464549505652323838, −3.91842183299328232541342250373, −2.77945626055794141924256988086, −2.56672667498395612721755499306, −0.24478374271573570800294830390, 0.24478374271573570800294830390, 2.56672667498395612721755499306, 2.77945626055794141924256988086, 3.91842183299328232541342250373, 4.81234308902464549505652323838, 5.49328477508169279973259059508, 6.11687900279083771683512313997, 7.25269199436005215281284680298, 7.66723475958326017391939791488, 9.022512280839115699593549104087

Graph of the $Z$-function along the critical line