L(s) = 1 | + (−0.670 + 0.387i)2-s + (−1.70 + 2.94i)4-s + (−1.35 + 2.34i)5-s + (8.30 − 4.79i)7-s − 5.73i·8-s − 2.09i·10-s + (5.14 + 8.91i)11-s + (8.91 − 15.4i)13-s + (−3.71 + 6.42i)14-s + (−4.58 − 7.93i)16-s + (−14.9 + 8.07i)17-s + 25.6·19-s + (−4.59 − 7.96i)20-s + (−6.90 − 3.98i)22-s + (12.5 − 21.6i)23-s + ⋯ |
L(s) = 1 | + (−0.335 + 0.193i)2-s + (−0.425 + 0.736i)4-s + (−0.270 + 0.468i)5-s + (1.18 − 0.684i)7-s − 0.716i·8-s − 0.209i·10-s + (0.467 + 0.810i)11-s + (0.685 − 1.18i)13-s + (−0.265 + 0.459i)14-s + (−0.286 − 0.496i)16-s + (−0.880 + 0.474i)17-s + 1.35·19-s + (−0.229 − 0.398i)20-s + (−0.313 − 0.181i)22-s + (0.543 − 0.941i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.567 - 0.823i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.567 - 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.469306251\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.469306251\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (14.9 - 8.07i)T \) |
good | 2 | \( 1 + (0.670 - 0.387i)T + (2 - 3.46i)T^{2} \) |
| 5 | \( 1 + (1.35 - 2.34i)T + (-12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (-8.30 + 4.79i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (-5.14 - 8.91i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-8.91 + 15.4i)T + (-84.5 - 146. i)T^{2} \) |
| 19 | \( 1 - 25.6T + 361T^{2} \) |
| 23 | \( 1 + (-12.5 + 21.6i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-8.47 - 14.6i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (20.6 + 11.9i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 50.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (19.5 - 33.8i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-18.1 - 31.4i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-25.6 + 14.8i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 39.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-64.6 - 37.3i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-23.7 + 13.6i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-53.3 + 92.4i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 25.8T + 5.04e3T^{2} \) |
| 73 | \( 1 - 58.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (69.1 - 39.9i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-59.2 + 34.2i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 177. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-24.6 + 14.2i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97911694681439465388614361961, −10.13568225941570289442286257332, −8.994664240658622659280704947726, −8.149596587170034886813009089217, −7.48429841975062240946545589615, −6.70417994852350493279686209427, −5.05320058671135204499633295705, −4.15429308784012801143265136743, −3.07978117002495421702051000444, −1.13571373533816609123532071978,
0.922365465374380136083572699757, 2.05161411433311468648339873432, 3.97547893479585164916985678039, 5.05143936737025139871380158676, 5.73025547439254483460102811137, 7.07366620452728842243879194780, 8.465355393012069470187372414471, 8.845911707604195379402788053355, 9.555951792120699770139739197507, 11.02746947116527281620085916462