L(s) = 1 | + (−2.65 + 1.53i)2-s + (2.68 − 4.65i)4-s + (−4.03 + 6.99i)5-s + (−8.17 + 4.72i)7-s + 4.20i·8-s − 24.7i·10-s + (−5.27 − 9.13i)11-s + (10.9 − 18.9i)13-s + (14.4 − 25.0i)14-s + (4.31 + 7.46i)16-s + (−15.3 + 7.32i)17-s − 14.6·19-s + (21.7 + 37.5i)20-s + (27.9 + 16.1i)22-s + (−3.86 + 6.69i)23-s + ⋯ |
L(s) = 1 | + (−1.32 + 0.765i)2-s + (0.671 − 1.16i)4-s + (−0.807 + 1.39i)5-s + (−1.16 + 0.674i)7-s + 0.525i·8-s − 2.47i·10-s + (−0.479 − 0.830i)11-s + (0.839 − 1.45i)13-s + (1.03 − 1.78i)14-s + (0.269 + 0.466i)16-s + (−0.902 + 0.430i)17-s − 0.771·19-s + (1.08 + 1.87i)20-s + (1.27 + 0.733i)22-s + (−0.168 + 0.291i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 - 0.237i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.971 - 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2963992896\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2963992896\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (15.3 - 7.32i)T \) |
good | 2 | \( 1 + (2.65 - 1.53i)T + (2 - 3.46i)T^{2} \) |
| 5 | \( 1 + (4.03 - 6.99i)T + (-12.5 - 21.6i)T^{2} \) |
| 7 | \( 1 + (8.17 - 4.72i)T + (24.5 - 42.4i)T^{2} \) |
| 11 | \( 1 + (5.27 + 9.13i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-10.9 + 18.9i)T + (-84.5 - 146. i)T^{2} \) |
| 19 | \( 1 + 14.6T + 361T^{2} \) |
| 23 | \( 1 + (3.86 - 6.69i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + (-3.81 - 6.60i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (-15.0 - 8.66i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 13.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-23.1 + 40.0i)T + (-840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-27.7 - 48.1i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (18.6 - 10.7i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + 61.3iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-76.3 - 44.0i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (34.9 - 20.1i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (36.3 - 62.9i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 10.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + 34.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-96.7 + 55.8i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-3.77 + 2.17i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 67.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (89.7 - 51.8i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63144903275051130589677795301, −10.03592660089001438802333976193, −8.787531475568583878048459776203, −8.232257830740851790899480079956, −7.32565504939440785654068952024, −6.35191921435320839135267656944, −5.95404514853067390136722274363, −3.64015671041830231475188940312, −2.78330548014685359614973587388, −0.29815818877858528426596810102,
0.74728358448889850776841696691, 2.16303434873374981689846505340, 3.86706875934172190697578788103, 4.67130114574868177782688806932, 6.49425894311860350765099228705, 7.48519325740654075335723560870, 8.457264894998945659472718597386, 9.121706302457498480319031918968, 9.712507839267696632463042824833, 10.72444783924962490723025934341