Properties

Label 2-459-153.11-c1-0-11
Degree $2$
Conductor $459$
Sign $-0.416 + 0.909i$
Analytic cond. $3.66513$
Root an. cond. $1.91445$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.607 − 0.791i)2-s + (0.259 − 0.970i)4-s + (3.76 + 0.246i)5-s + (−0.260 − 3.97i)7-s + (−2.76 + 1.14i)8-s + (−2.08 − 3.12i)10-s + (−2.97 − 2.60i)11-s + (0.149 + 0.0401i)13-s + (−2.99 + 2.62i)14-s + (0.850 + 0.490i)16-s + (1.50 + 3.83i)17-s + (3.79 + 1.57i)19-s + (1.21 − 3.58i)20-s + (−0.257 + 3.93i)22-s + (−0.314 − 0.926i)23-s + ⋯
L(s)  = 1  + (−0.429 − 0.559i)2-s + (0.129 − 0.485i)4-s + (1.68 + 0.110i)5-s + (−0.0985 − 1.50i)7-s + (−0.979 + 0.405i)8-s + (−0.660 − 0.988i)10-s + (−0.896 − 0.785i)11-s + (0.0415 + 0.0111i)13-s + (−0.799 + 0.701i)14-s + (0.212 + 0.122i)16-s + (0.364 + 0.931i)17-s + (0.870 + 0.360i)19-s + (0.272 − 0.801i)20-s + (−0.0549 + 0.838i)22-s + (−0.0656 − 0.193i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(459\)    =    \(3^{3} \cdot 17\)
Sign: $-0.416 + 0.909i$
Analytic conductor: \(3.66513\)
Root analytic conductor: \(1.91445\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{459} (62, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 459,\ (\ :1/2),\ -0.416 + 0.909i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.745496 - 1.16090i\)
\(L(\frac12)\) \(\approx\) \(0.745496 - 1.16090i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + (-1.50 - 3.83i)T \)
good2 \( 1 + (0.607 + 0.791i)T + (-0.517 + 1.93i)T^{2} \)
5 \( 1 + (-3.76 - 0.246i)T + (4.95 + 0.652i)T^{2} \)
7 \( 1 + (0.260 + 3.97i)T + (-6.94 + 0.913i)T^{2} \)
11 \( 1 + (2.97 + 2.60i)T + (1.43 + 10.9i)T^{2} \)
13 \( 1 + (-0.149 - 0.0401i)T + (11.2 + 6.5i)T^{2} \)
19 \( 1 + (-3.79 - 1.57i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (0.314 + 0.926i)T + (-18.2 + 14.0i)T^{2} \)
29 \( 1 + (4.46 - 2.20i)T + (17.6 - 23.0i)T^{2} \)
31 \( 1 + (3.23 + 3.69i)T + (-4.04 + 30.7i)T^{2} \)
37 \( 1 + (0.326 + 1.64i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (-2.15 + 4.36i)T + (-24.9 - 32.5i)T^{2} \)
43 \( 1 + (0.517 - 3.93i)T + (-41.5 - 11.1i)T^{2} \)
47 \( 1 + (-2.97 + 0.797i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (-0.152 + 0.367i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (1.37 + 1.05i)T + (15.2 + 56.9i)T^{2} \)
61 \( 1 + (-7.89 + 0.517i)T + (60.4 - 7.96i)T^{2} \)
67 \( 1 + (-9.67 + 5.58i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-3.55 + 0.707i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (-12.4 - 8.29i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (7.85 - 8.95i)T + (-10.3 - 78.3i)T^{2} \)
83 \( 1 + (-0.349 + 0.268i)T + (21.4 - 80.1i)T^{2} \)
89 \( 1 + (3.79 - 3.79i)T - 89iT^{2} \)
97 \( 1 + (3.20 + 6.50i)T + (-59.0 + 76.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70843788700960478799612303081, −9.948882330318358828680172495136, −9.466196348311752588541843030491, −8.207243647128174680828899068048, −6.98251111561285182083072264579, −5.91563852088337745484381772877, −5.35609992179906761386582783428, −3.54414323045709348641906192131, −2.19651525132149663682228145153, −1.01475593330780914343573469588, 2.15929869046731586112724158916, 2.94398241934589535532623886132, 5.20142780575706442716008058480, 5.66559255700379353833238016843, 6.72965941936423995272367881376, 7.68953694596197624720812454653, 8.831093096101429693999334665755, 9.422558490706491975978440576319, 9.981780859939750069060418313106, 11.42833057903125142896568214022

Graph of the $Z$-function along the critical line