L(s) = 1 | + (−3.19 − 1.84i)2-s + (4.80 + 8.32i)4-s + (−2.19 − 3.79i)5-s + (−6.88 − 3.97i)7-s − 20.7i·8-s + 16.1i·10-s + (−1.03 + 1.80i)11-s + (−9.18 − 15.9i)13-s + (14.6 + 25.4i)14-s + (−18.9 + 32.8i)16-s + (9.71 − 13.9i)17-s + 21.4·19-s + (21.0 − 36.5i)20-s + (6.64 − 3.83i)22-s + (−10.9 − 18.9i)23-s + ⋯ |
L(s) = 1 | + (−1.59 − 0.922i)2-s + (1.20 + 2.08i)4-s + (−0.438 − 0.759i)5-s + (−0.983 − 0.568i)7-s − 2.58i·8-s + 1.61i·10-s + (−0.0944 + 0.163i)11-s + (−0.706 − 1.22i)13-s + (1.04 + 1.81i)14-s + (−1.18 + 2.05i)16-s + (0.571 − 0.820i)17-s + 1.12·19-s + (1.05 − 1.82i)20-s + (0.301 − 0.174i)22-s + (−0.476 − 0.824i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.221 - 0.975i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.221 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.06864662990\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06864662990\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (-9.71 + 13.9i)T \) |
good | 2 | \( 1 + (3.19 + 1.84i)T + (2 + 3.46i)T^{2} \) |
| 5 | \( 1 + (2.19 + 3.79i)T + (-12.5 + 21.6i)T^{2} \) |
| 7 | \( 1 + (6.88 + 3.97i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (1.03 - 1.80i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (9.18 + 15.9i)T + (-84.5 + 146. i)T^{2} \) |
| 19 | \( 1 - 21.4T + 361T^{2} \) |
| 23 | \( 1 + (10.9 + 18.9i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (16.2 - 28.1i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (41.8 - 24.1i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 24.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (17.7 + 30.7i)T + (-840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (28.7 - 49.7i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-30.6 - 17.7i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 32.6iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-30.3 + 17.5i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-40.3 - 23.2i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-13.0 - 22.6i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 119.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 106. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-74.5 - 43.0i)T + (3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-5.09 - 2.93i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 - 83.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (89.0 + 51.4i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05467686653346254541227647035, −9.420759966651432467858466780326, −8.552968917966242036913116361963, −7.58941405644190196637491487806, −7.07219275636117985113578050882, −5.27266245087584790759714111831, −3.64989137412914814228267494007, −2.76289443301078060175355516823, −0.999588401979641863103219137690, −0.05907847308973359425189015148,
1.93604762480539888806368730788, 3.47915236409472169461850135400, 5.51171708492121191991991275089, 6.33540322806325511294780456520, 7.20147461668248008395697609205, 7.76626435366815280893192238608, 8.953593198736168352760542154308, 9.618564470363864932480930203482, 10.19195197004985281023232590964, 11.34796012032074471154302223580