L(s) = 1 | + (1.68 + 0.405i)3-s + (3.00 − 0.529i)5-s + (−0.251 + 0.435i)7-s + (2.67 + 1.36i)9-s + (−2.58 + 1.49i)11-s + (0.364 + 1.00i)13-s + (5.27 + 0.325i)15-s + (−0.866 − 1.03i)17-s + (1.71 − 4.00i)19-s + (−0.599 + 0.630i)21-s + (−8.83 − 1.55i)23-s + (4.03 − 1.46i)25-s + (3.94 + 3.38i)27-s + (−3.43 − 2.88i)29-s + (3.58 + 2.06i)31-s + ⋯ |
L(s) = 1 | + (0.972 + 0.234i)3-s + (1.34 − 0.236i)5-s + (−0.0949 + 0.164i)7-s + (0.890 + 0.455i)9-s + (−0.779 + 0.450i)11-s + (0.101 + 0.277i)13-s + (1.36 + 0.0841i)15-s + (−0.210 − 0.250i)17-s + (0.394 − 0.918i)19-s + (−0.130 + 0.137i)21-s + (−1.84 − 0.324i)23-s + (0.807 − 0.293i)25-s + (0.759 + 0.650i)27-s + (−0.638 − 0.535i)29-s + (0.643 + 0.371i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.228i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.228i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.23687 + 0.258782i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.23687 + 0.258782i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.68 - 0.405i)T \) |
| 19 | \( 1 + (-1.71 + 4.00i)T \) |
good | 5 | \( 1 + (-3.00 + 0.529i)T + (4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (0.251 - 0.435i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.58 - 1.49i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.364 - 1.00i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (0.866 + 1.03i)T + (-2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (8.83 + 1.55i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (3.43 + 2.88i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (-3.58 - 2.06i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.40iT - 37T^{2} \) |
| 41 | \( 1 + (-4.19 - 1.52i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (0.539 + 3.05i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (1.56 - 1.86i)T + (-8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (-1.97 + 11.2i)T + (-49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (8.56 - 7.18i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-1.52 + 8.62i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (6.94 - 8.27i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (2.02 + 11.5i)T + (-66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (-9.45 - 3.44i)T + (55.9 + 46.9i)T^{2} \) |
| 79 | \( 1 + (-0.310 + 0.852i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-6.19 - 3.57i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (13.7 - 5.00i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (9.45 + 11.2i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80737404679403420891031664247, −9.852036528542061666993384799262, −9.514949680733792061052318077956, −8.527092777340032753798995592432, −7.58457431318711602583238377962, −6.42562220195972361574470834408, −5.33217501362587062445255386535, −4.30476730017411846095280290840, −2.73391381132640820883294220360, −1.91105416941547272722669855292,
1.71377492627439386721937539311, 2.74304090983598166146421506508, 3.94537521571522597041431989991, 5.57446554585855596318021615196, 6.27838142496728374209534150971, 7.55030293241044669093450498470, 8.272704877530779912164585142264, 9.366895351123366540321271343700, 10.02869087034079355618034385464, 10.67414866115214027305349885925