| L(s) = 1 | + 1.61·2-s − 0.618·3-s + 1.61·4-s + 5-s − 1.00·6-s − 7-s + 8-s − 0.618·9-s + 1.61·10-s − 1.00·12-s − 13-s − 1.61·14-s − 0.618·15-s + 1.61·17-s − 0.999·18-s − 1.61·19-s + 1.61·20-s + 0.618·21-s − 0.618·24-s + 25-s − 1.61·26-s + 27-s − 1.61·28-s + 0.618·29-s − 1.00·30-s + 0.618·31-s − 32-s + ⋯ |
| L(s) = 1 | + 1.61·2-s − 0.618·3-s + 1.61·4-s + 5-s − 1.00·6-s − 7-s + 8-s − 0.618·9-s + 1.61·10-s − 1.00·12-s − 13-s − 1.61·14-s − 0.618·15-s + 1.61·17-s − 0.999·18-s − 1.61·19-s + 1.61·20-s + 0.618·21-s − 0.618·24-s + 25-s − 1.61·26-s + 27-s − 1.61·28-s + 0.618·29-s − 1.00·30-s + 0.618·31-s − 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.604158131\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.604158131\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + T \) |
| good | 2 | \( 1 - 1.61T + T^{2} \) |
| 3 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 - 1.61T + T^{2} \) |
| 19 | \( 1 + 1.61T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - 0.618T + T^{2} \) |
| 31 | \( 1 - 0.618T + T^{2} \) |
| 37 | \( 1 + 0.618T + T^{2} \) |
| 41 | \( 1 + 1.61T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 0.618T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.61T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 1.61T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70069660327717277702905097054, −10.47069501557277608534698147222, −9.903313649497054664411617526642, −8.609445141384698874747377257719, −6.92559653171325574980040102120, −6.27172015635440273509783693775, −5.56472105591527686146600246860, −4.81203407246921523038393131124, −3.36642887434298895902636875765, −2.42164990991445904924649273207,
2.42164990991445904924649273207, 3.36642887434298895902636875765, 4.81203407246921523038393131124, 5.56472105591527686146600246860, 6.27172015635440273509783693775, 6.92559653171325574980040102120, 8.609445141384698874747377257719, 9.903313649497054664411617526642, 10.47069501557277608534698147222, 11.70069660327717277702905097054