| L(s) = 1 | + 0.618·2-s + 1.61·3-s − 0.618·4-s − 5-s + 1.00·6-s + 7-s − 8-s + 1.61·9-s − 0.618·10-s − 0.999·12-s − 13-s + 0.618·14-s − 1.61·15-s − 0.618·17-s + 1.00·18-s − 0.618·19-s + 0.618·20-s + 1.61·21-s − 1.61·24-s + 25-s − 0.618·26-s + 27-s − 0.618·28-s − 1.61·29-s − 1.00·30-s + 1.61·31-s + 0.999·32-s + ⋯ |
| L(s) = 1 | + 0.618·2-s + 1.61·3-s − 0.618·4-s − 5-s + 1.00·6-s + 7-s − 8-s + 1.61·9-s − 0.618·10-s − 0.999·12-s − 13-s + 0.618·14-s − 1.61·15-s − 0.618·17-s + 1.00·18-s − 0.618·19-s + 0.618·20-s + 1.61·21-s − 1.61·24-s + 25-s − 0.618·26-s + 27-s − 0.618·28-s − 1.61·29-s − 1.00·30-s + 1.61·31-s + 0.999·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 455 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.385679690\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.385679690\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 + T \) |
| good | 2 | \( 1 - 0.618T + T^{2} \) |
| 3 | \( 1 - 1.61T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + 0.618T + T^{2} \) |
| 19 | \( 1 + 0.618T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.61T + T^{2} \) |
| 31 | \( 1 - 1.61T + T^{2} \) |
| 37 | \( 1 + 1.61T + T^{2} \) |
| 41 | \( 1 + 0.618T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - 1.61T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 0.618T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.61T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53275670338738618225331340259, −10.26195380663044961028236744916, −9.167647061980475997668031966924, −8.497545394034329529082922726377, −7.926473478970942324410766675232, −6.96619615097941650788304395848, −5.09817636704050225698160834470, −4.30262930389533896931978006717, −3.50931168675912941907696705197, −2.28227882870049827896878400031,
2.28227882870049827896878400031, 3.50931168675912941907696705197, 4.30262930389533896931978006717, 5.09817636704050225698160834470, 6.96619615097941650788304395848, 7.926473478970942324410766675232, 8.497545394034329529082922726377, 9.167647061980475997668031966924, 10.26195380663044961028236744916, 11.53275670338738618225331340259