L(s) = 1 | + 5-s + 7-s + 6·11-s + 6·13-s + 2·17-s + 7·19-s + 23-s − 4·25-s − 2·29-s + 10·31-s + 35-s − 6·37-s + 8·41-s − 10·43-s − 8·47-s + 49-s − 2·53-s + 6·55-s + 7·61-s + 6·65-s − 12·67-s − 15·71-s − 2·73-s + 6·77-s + 79-s − 12·83-s + 2·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s + 1.80·11-s + 1.66·13-s + 0.485·17-s + 1.60·19-s + 0.208·23-s − 4/5·25-s − 0.371·29-s + 1.79·31-s + 0.169·35-s − 0.986·37-s + 1.24·41-s − 1.52·43-s − 1.16·47-s + 1/7·49-s − 0.274·53-s + 0.809·55-s + 0.896·61-s + 0.744·65-s − 1.46·67-s − 1.78·71-s − 0.234·73-s + 0.683·77-s + 0.112·79-s − 1.31·83-s + 0.216·85-s + ⋯ |
Λ(s)=(=(4536s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4536s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.054793034 |
L(21) |
≈ |
3.054793034 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1−T+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−7T+pT2 |
| 23 | 1−T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1−10T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−8T+pT2 |
| 43 | 1+10T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−7T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+15T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+4T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.460095941009109367604154676152, −7.62853361422202650085332123774, −6.75778009886636317888600581021, −6.13984952667230449829780014899, −5.55782610661352515541339492471, −4.53630096095552390250482974797, −3.72462631167540553827048166168, −3.08371928803854652319736627806, −1.54842755853086999230961203081, −1.18913645458013163821193224515,
1.18913645458013163821193224515, 1.54842755853086999230961203081, 3.08371928803854652319736627806, 3.72462631167540553827048166168, 4.53630096095552390250482974797, 5.55782610661352515541339492471, 6.13984952667230449829780014899, 6.75778009886636317888600581021, 7.62853361422202650085332123774, 8.460095941009109367604154676152