L(s) = 1 | − 2i·2-s − 4·4-s + i·7-s + 8i·8-s − 42·11-s − 67i·13-s + 2·14-s + 16·16-s + 54i·17-s + 115·19-s + 84i·22-s + 162i·23-s − 134·26-s − 4i·28-s − 210·29-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.0539i·7-s + 0.353i·8-s − 1.15·11-s − 1.42i·13-s + 0.0381·14-s + 0.250·16-s + 0.770i·17-s + 1.38·19-s + 0.814i·22-s + 1.46i·23-s − 1.01·26-s − 0.0269i·28-s − 1.34·29-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(450s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
26.5508 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
0.8325663909 |
L(21) |
≈ |
0.8325663909 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−iT−343T2 |
| 11 | 1+42T+1.33e3T2 |
| 13 | 1+67iT−2.19e3T2 |
| 17 | 1−54iT−4.91e3T2 |
| 19 | 1−115T+6.85e3T2 |
| 23 | 1−162iT−1.21e4T2 |
| 29 | 1+210T+2.43e4T2 |
| 31 | 1+193T+2.97e4T2 |
| 37 | 1−286iT−5.06e4T2 |
| 41 | 1+12T+6.89e4T2 |
| 43 | 1−263iT−7.95e4T2 |
| 47 | 1−414iT−1.03e5T2 |
| 53 | 1−192iT−1.48e5T2 |
| 59 | 1−690T+2.05e5T2 |
| 61 | 1+733T+2.26e5T2 |
| 67 | 1+299iT−3.00e5T2 |
| 71 | 1−228T+3.57e5T2 |
| 73 | 1−938iT−3.89e5T2 |
| 79 | 1−160T+4.93e5T2 |
| 83 | 1−462iT−5.71e5T2 |
| 89 | 1+240T+7.04e5T2 |
| 97 | 1−511iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83873681475319718413332433348, −10.04631242273619391487746896641, −9.276509670919285682082372819313, −8.004239565543575578434790469912, −7.52123912447999566358368013415, −5.72425587523346107784076344787, −5.20584491168773341484575028387, −3.65225842048490600129525126996, −2.78991282878349325069165891270, −1.28978331279074381337272596413,
0.28117832935911331330552939217, 2.20996701283792806053974829948, 3.73581182558786197460205492013, 4.93138856214640589143034796965, 5.71360486807984569434128470588, 7.03886836608338327275433017618, 7.48998783759318748165935589343, 8.739591927397558823403244219767, 9.402775764559550739188966706582, 10.42358364976021129169946794179