L(s) = 1 | − 2i·2-s − 4·4-s + i·7-s + 8i·8-s − 42·11-s − 67i·13-s + 2·14-s + 16·16-s + 54i·17-s + 115·19-s + 84i·22-s + 162i·23-s − 134·26-s − 4i·28-s − 210·29-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.0539i·7-s + 0.353i·8-s − 1.15·11-s − 1.42i·13-s + 0.0381·14-s + 0.250·16-s + 0.770i·17-s + 1.38·19-s + 0.814i·22-s + 1.46i·23-s − 1.01·26-s − 0.0269i·28-s − 1.34·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.8325663909\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8325663909\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT - 343T^{2} \) |
| 11 | \( 1 + 42T + 1.33e3T^{2} \) |
| 13 | \( 1 + 67iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 54iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 115T + 6.85e3T^{2} \) |
| 23 | \( 1 - 162iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 210T + 2.43e4T^{2} \) |
| 31 | \( 1 + 193T + 2.97e4T^{2} \) |
| 37 | \( 1 - 286iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 12T + 6.89e4T^{2} \) |
| 43 | \( 1 - 263iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 414iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 192iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 690T + 2.05e5T^{2} \) |
| 61 | \( 1 + 733T + 2.26e5T^{2} \) |
| 67 | \( 1 + 299iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 228T + 3.57e5T^{2} \) |
| 73 | \( 1 - 938iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 160T + 4.93e5T^{2} \) |
| 83 | \( 1 - 462iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 240T + 7.04e5T^{2} \) |
| 97 | \( 1 - 511iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83873681475319718413332433348, −10.04631242273619391487746896641, −9.276509670919285682082372819313, −8.004239565543575578434790469912, −7.52123912447999566358368013415, −5.72425587523346107784076344787, −5.20584491168773341484575028387, −3.65225842048490600129525126996, −2.78991282878349325069165891270, −1.28978331279074381337272596413,
0.28117832935911331330552939217, 2.20996701283792806053974829948, 3.73581182558786197460205492013, 4.93138856214640589143034796965, 5.71360486807984569434128470588, 7.03886836608338327275433017618, 7.48998783759318748165935589343, 8.739591927397558823403244219767, 9.402775764559550739188966706582, 10.42358364976021129169946794179