Properties

Label 2-450-5.4-c3-0-18
Degree $2$
Conductor $450$
Sign $-0.894 + 0.447i$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s − 4·4-s − 32i·7-s + 8i·8-s + 60·11-s − 34i·13-s − 64·14-s + 16·16-s + 42i·17-s + 76·19-s − 120i·22-s − 68·26-s + 128i·28-s + 6·29-s − 232·31-s − 32i·32-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s − 1.72i·7-s + 0.353i·8-s + 1.64·11-s − 0.725i·13-s − 1.22·14-s + 0.250·16-s + 0.599i·17-s + 0.917·19-s − 1.16i·22-s − 0.512·26-s + 0.863i·28-s + 0.0384·29-s − 1.34·31-s − 0.176i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{450} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.700499078\)
\(L(\frac12)\) \(\approx\) \(1.700499078\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 32iT - 343T^{2} \)
11 \( 1 - 60T + 1.33e3T^{2} \)
13 \( 1 + 34iT - 2.19e3T^{2} \)
17 \( 1 - 42iT - 4.91e3T^{2} \)
19 \( 1 - 76T + 6.85e3T^{2} \)
23 \( 1 - 1.21e4T^{2} \)
29 \( 1 - 6T + 2.43e4T^{2} \)
31 \( 1 + 232T + 2.97e4T^{2} \)
37 \( 1 + 134iT - 5.06e4T^{2} \)
41 \( 1 + 234T + 6.89e4T^{2} \)
43 \( 1 + 412iT - 7.95e4T^{2} \)
47 \( 1 + 360iT - 1.03e5T^{2} \)
53 \( 1 + 222iT - 1.48e5T^{2} \)
59 \( 1 - 660T + 2.05e5T^{2} \)
61 \( 1 + 490T + 2.26e5T^{2} \)
67 \( 1 + 812iT - 3.00e5T^{2} \)
71 \( 1 + 120T + 3.57e5T^{2} \)
73 \( 1 - 746iT - 3.89e5T^{2} \)
79 \( 1 + 152T + 4.93e5T^{2} \)
83 \( 1 - 804iT - 5.71e5T^{2} \)
89 \( 1 + 678T + 7.04e5T^{2} \)
97 \( 1 + 194iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.36960486207413218562429654310, −9.635198483667549174820465745977, −8.629838067292762559393991131701, −7.48408825553197541344651142689, −6.71176049185541299580077309044, −5.31839359331918009536537271833, −3.94683224588907942385580563854, −3.57013973419933974095619786190, −1.61124761801604400487030980137, −0.59461831291699184534200897269, 1.56047244359457693387529961113, 3.10864917349973933654939251243, 4.47828883224516753490115609939, 5.56132103344646327153951873948, 6.34031533826960366872582671706, 7.24285252541707020506546643841, 8.504650111796543161488609042482, 9.200758631150008014799649441554, 9.628846829947841016113485089352, 11.41634391908890801855662568750

Graph of the $Z$-function along the critical line