L(s) = 1 | − 2i·2-s − 4·4-s − 32i·7-s + 8i·8-s + 60·11-s − 34i·13-s − 64·14-s + 16·16-s + 42i·17-s + 76·19-s − 120i·22-s − 68·26-s + 128i·28-s + 6·29-s − 232·31-s − 32i·32-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 1.72i·7-s + 0.353i·8-s + 1.64·11-s − 0.725i·13-s − 1.22·14-s + 0.250·16-s + 0.599i·17-s + 0.917·19-s − 1.16i·22-s − 0.512·26-s + 0.863i·28-s + 0.0384·29-s − 1.34·31-s − 0.176i·32-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(−0.894+0.447i)Λ(4−s)
Λ(s)=(=(450s/2ΓC(s+3/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
26.5508 |
Root analytic conductor: |
5.15275 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :3/2), −0.894+0.447i)
|
Particular Values
L(2) |
≈ |
1.700499078 |
L(21) |
≈ |
1.700499078 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+2iT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+32iT−343T2 |
| 11 | 1−60T+1.33e3T2 |
| 13 | 1+34iT−2.19e3T2 |
| 17 | 1−42iT−4.91e3T2 |
| 19 | 1−76T+6.85e3T2 |
| 23 | 1−1.21e4T2 |
| 29 | 1−6T+2.43e4T2 |
| 31 | 1+232T+2.97e4T2 |
| 37 | 1+134iT−5.06e4T2 |
| 41 | 1+234T+6.89e4T2 |
| 43 | 1+412iT−7.95e4T2 |
| 47 | 1+360iT−1.03e5T2 |
| 53 | 1+222iT−1.48e5T2 |
| 59 | 1−660T+2.05e5T2 |
| 61 | 1+490T+2.26e5T2 |
| 67 | 1+812iT−3.00e5T2 |
| 71 | 1+120T+3.57e5T2 |
| 73 | 1−746iT−3.89e5T2 |
| 79 | 1+152T+4.93e5T2 |
| 83 | 1−804iT−5.71e5T2 |
| 89 | 1+678T+7.04e5T2 |
| 97 | 1+194iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.36960486207413218562429654310, −9.635198483667549174820465745977, −8.629838067292762559393991131701, −7.48408825553197541344651142689, −6.71176049185541299580077309044, −5.31839359331918009536537271833, −3.94683224588907942385580563854, −3.57013973419933974095619786190, −1.61124761801604400487030980137, −0.59461831291699184534200897269,
1.56047244359457693387529961113, 3.10864917349973933654939251243, 4.47828883224516753490115609939, 5.56132103344646327153951873948, 6.34031533826960366872582671706, 7.24285252541707020506546643841, 8.504650111796543161488609042482, 9.200758631150008014799649441554, 9.628846829947841016113485089352, 11.41634391908890801855662568750