L(s) = 1 | − 2i·2-s − 4·4-s − 32i·7-s + 8i·8-s + 60·11-s − 34i·13-s − 64·14-s + 16·16-s + 42i·17-s + 76·19-s − 120i·22-s − 68·26-s + 128i·28-s + 6·29-s − 232·31-s − 32i·32-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s − 1.72i·7-s + 0.353i·8-s + 1.64·11-s − 0.725i·13-s − 1.22·14-s + 0.250·16-s + 0.599i·17-s + 0.917·19-s − 1.16i·22-s − 0.512·26-s + 0.863i·28-s + 0.0384·29-s − 1.34·31-s − 0.176i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.700499078\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.700499078\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 32iT - 343T^{2} \) |
| 11 | \( 1 - 60T + 1.33e3T^{2} \) |
| 13 | \( 1 + 34iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 42iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 76T + 6.85e3T^{2} \) |
| 23 | \( 1 - 1.21e4T^{2} \) |
| 29 | \( 1 - 6T + 2.43e4T^{2} \) |
| 31 | \( 1 + 232T + 2.97e4T^{2} \) |
| 37 | \( 1 + 134iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 234T + 6.89e4T^{2} \) |
| 43 | \( 1 + 412iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 360iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 222iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 660T + 2.05e5T^{2} \) |
| 61 | \( 1 + 490T + 2.26e5T^{2} \) |
| 67 | \( 1 + 812iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 120T + 3.57e5T^{2} \) |
| 73 | \( 1 - 746iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 152T + 4.93e5T^{2} \) |
| 83 | \( 1 - 804iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 678T + 7.04e5T^{2} \) |
| 97 | \( 1 + 194iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36960486207413218562429654310, −9.635198483667549174820465745977, −8.629838067292762559393991131701, −7.48408825553197541344651142689, −6.71176049185541299580077309044, −5.31839359331918009536537271833, −3.94683224588907942385580563854, −3.57013973419933974095619786190, −1.61124761801604400487030980137, −0.59461831291699184534200897269,
1.56047244359457693387529961113, 3.10864917349973933654939251243, 4.47828883224516753490115609939, 5.56132103344646327153951873948, 6.34031533826960366872582671706, 7.24285252541707020506546643841, 8.504650111796543161488609042482, 9.200758631150008014799649441554, 9.628846829947841016113485089352, 11.41634391908890801855662568750