L(s) = 1 | + (0.743 − 0.669i)2-s + (0.679 + 1.59i)3-s + (0.104 − 0.994i)4-s + (0.798 + 2.08i)5-s + (1.57 + 0.728i)6-s + (2.11 + 1.21i)7-s + (−0.587 − 0.809i)8-s + (−2.07 + 2.16i)9-s + (1.99 + 1.01i)10-s + (0.211 + 0.234i)11-s + (1.65 − 0.509i)12-s + (−4.38 − 3.95i)13-s + (2.38 − 0.507i)14-s + (−2.78 + 2.69i)15-s + (−0.978 − 0.207i)16-s + (3.64 + 5.01i)17-s + ⋯ |
L(s) = 1 | + (0.525 − 0.473i)2-s + (0.392 + 0.919i)3-s + (0.0522 − 0.497i)4-s + (0.356 + 0.934i)5-s + (0.641 + 0.297i)6-s + (0.798 + 0.460i)7-s + (−0.207 − 0.286i)8-s + (−0.691 + 0.722i)9-s + (0.629 + 0.322i)10-s + (0.0637 + 0.0708i)11-s + (0.477 − 0.147i)12-s + (−1.21 − 1.09i)13-s + (0.637 − 0.135i)14-s + (−0.719 + 0.694i)15-s + (−0.244 − 0.0519i)16-s + (0.883 + 1.21i)17-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)(0.713−0.700i)Λ(2−s)
Λ(s)=(=(450s/2ΓC(s+1/2)L(s)(0.713−0.700i)Λ(1−s)
Degree: |
2 |
Conductor: |
450
= 2⋅32⋅52
|
Sign: |
0.713−0.700i
|
Analytic conductor: |
3.59326 |
Root analytic conductor: |
1.89559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ450(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 450, ( :1/2), 0.713−0.700i)
|
Particular Values
L(1) |
≈ |
2.05295+0.838880i |
L(21) |
≈ |
2.05295+0.838880i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.743+0.669i)T |
| 3 | 1+(−0.679−1.59i)T |
| 5 | 1+(−0.798−2.08i)T |
good | 7 | 1+(−2.11−1.21i)T+(3.5+6.06i)T2 |
| 11 | 1+(−0.211−0.234i)T+(−1.14+10.9i)T2 |
| 13 | 1+(4.38+3.95i)T+(1.35+12.9i)T2 |
| 17 | 1+(−3.64−5.01i)T+(−5.25+16.1i)T2 |
| 19 | 1+(0.706−0.513i)T+(5.87−18.0i)T2 |
| 23 | 1+(1.01+4.78i)T+(−21.0+9.35i)T2 |
| 29 | 1+(−8.57+3.81i)T+(19.4−21.5i)T2 |
| 31 | 1+(−2.30−1.02i)T+(20.7+23.0i)T2 |
| 37 | 1+(−3.71+1.20i)T+(29.9−21.7i)T2 |
| 41 | 1+(−3.44+3.82i)T+(−4.28−40.7i)T2 |
| 43 | 1+(−2.81−1.62i)T+(21.5+37.2i)T2 |
| 47 | 1+(3.16+7.11i)T+(−31.4+34.9i)T2 |
| 53 | 1+(3.18−4.38i)T+(−16.3−50.4i)T2 |
| 59 | 1+(−1.70+1.88i)T+(−6.16−58.6i)T2 |
| 61 | 1+(6.20+6.89i)T+(−6.37+60.6i)T2 |
| 67 | 1+(0.119−0.269i)T+(−44.8−49.7i)T2 |
| 71 | 1+(−11.2−8.18i)T+(21.9+67.5i)T2 |
| 73 | 1+(8.80+2.86i)T+(59.0+42.9i)T2 |
| 79 | 1+(13.4−5.96i)T+(52.8−58.7i)T2 |
| 83 | 1+(1.24−0.130i)T+(81.1−17.2i)T2 |
| 89 | 1+(−4.73+14.5i)T+(−72.0−52.3i)T2 |
| 97 | 1+(1.09+2.44i)T+(−64.9+72.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02757259039552214224909813743, −10.20060557737958863028618909122, −9.959281807068018503076786795321, −8.509294431881055518779412388356, −7.72692954043390994934178759468, −6.18282171533770455544004618685, −5.31029620032885864998092748001, −4.33048661135735954980737606994, −3.06306350819034172171287044336, −2.25644677202684363097321546988,
1.31116224589345630609373135940, 2.72571207624468589274365620994, 4.42020004433785534925653482106, 5.16871816706686938927864086260, 6.36921547815263432943550025901, 7.40457666078113313115419060963, 7.947565948954483088615346867833, 9.023265781385794477046975438015, 9.770284554731779478800780064550, 11.48944056630536768118929536744