L(s) = 1 | + 2·2-s + 4·4-s − 23·7-s + 8·8-s + 30·11-s − 29·13-s − 46·14-s + 16·16-s + 78·17-s + 149·19-s + 60·22-s + 150·23-s − 58·26-s − 92·28-s + 234·29-s − 217·31-s + 32·32-s + 156·34-s − 146·37-s + 298·38-s + 156·41-s + 433·43-s + 120·44-s + 300·46-s + 30·47-s + 186·49-s − 116·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.24·7-s + 0.353·8-s + 0.822·11-s − 0.618·13-s − 0.878·14-s + 1/4·16-s + 1.11·17-s + 1.79·19-s + 0.581·22-s + 1.35·23-s − 0.437·26-s − 0.620·28-s + 1.49·29-s − 1.25·31-s + 0.176·32-s + 0.786·34-s − 0.648·37-s + 1.27·38-s + 0.594·41-s + 1.53·43-s + 0.411·44-s + 0.961·46-s + 0.0931·47-s + 0.542·49-s − 0.309·52-s + ⋯ |
Λ(s)=(=(450s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(450s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.920316667 |
L(21) |
≈ |
2.920316667 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−pT |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+23T+p3T2 |
| 11 | 1−30T+p3T2 |
| 13 | 1+29T+p3T2 |
| 17 | 1−78T+p3T2 |
| 19 | 1−149T+p3T2 |
| 23 | 1−150T+p3T2 |
| 29 | 1−234T+p3T2 |
| 31 | 1+7pT+p3T2 |
| 37 | 1+146T+p3T2 |
| 41 | 1−156T+p3T2 |
| 43 | 1−433T+p3T2 |
| 47 | 1−30T+p3T2 |
| 53 | 1+552T+p3T2 |
| 59 | 1−270T+p3T2 |
| 61 | 1−275T+p3T2 |
| 67 | 1+803T+p3T2 |
| 71 | 1+660T+p3T2 |
| 73 | 1−646T+p3T2 |
| 79 | 1−992T+p3T2 |
| 83 | 1+846T+p3T2 |
| 89 | 1−1488T+p3T2 |
| 97 | 1−319T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72791457191066778887173140302, −9.715550404162922047189373314224, −9.153560049403694244995878743819, −7.57986522202087523936994107537, −6.89257208206227116290587146363, −5.89548120333738021764531113823, −4.95443726687052472657240711768, −3.57333293524272170672690575761, −2.89594104811446235744912480528, −1.03050173090979794118344008072,
1.03050173090979794118344008072, 2.89594104811446235744912480528, 3.57333293524272170672690575761, 4.95443726687052472657240711768, 5.89548120333738021764531113823, 6.89257208206227116290587146363, 7.57986522202087523936994107537, 9.153560049403694244995878743819, 9.715550404162922047189373314224, 10.72791457191066778887173140302