Properties

Label 2-450-1.1-c3-0-23
Degree $2$
Conductor $450$
Sign $-1$
Analytic cond. $26.5508$
Root an. cond. $5.15275$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s + 2·7-s + 8·8-s − 70·11-s − 54·13-s + 4·14-s + 16·16-s − 22·17-s + 24·19-s − 140·22-s − 100·23-s − 108·26-s + 8·28-s − 216·29-s + 208·31-s + 32·32-s − 44·34-s + 254·37-s + 48·38-s + 206·41-s − 292·43-s − 280·44-s − 200·46-s − 320·47-s − 339·49-s − 216·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.107·7-s + 0.353·8-s − 1.91·11-s − 1.15·13-s + 0.0763·14-s + 1/4·16-s − 0.313·17-s + 0.289·19-s − 1.35·22-s − 0.906·23-s − 0.814·26-s + 0.0539·28-s − 1.38·29-s + 1.20·31-s + 0.176·32-s − 0.221·34-s + 1.12·37-s + 0.204·38-s + 0.784·41-s − 1.03·43-s − 0.959·44-s − 0.641·46-s − 0.993·47-s − 0.988·49-s − 0.576·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(450\)    =    \(2 \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(26.5508\)
Root analytic conductor: \(5.15275\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 450,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 70 T + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 + 22 T + p^{3} T^{2} \)
19 \( 1 - 24 T + p^{3} T^{2} \)
23 \( 1 + 100 T + p^{3} T^{2} \)
29 \( 1 + 216 T + p^{3} T^{2} \)
31 \( 1 - 208 T + p^{3} T^{2} \)
37 \( 1 - 254 T + p^{3} T^{2} \)
41 \( 1 - 206 T + p^{3} T^{2} \)
43 \( 1 + 292 T + p^{3} T^{2} \)
47 \( 1 + 320 T + p^{3} T^{2} \)
53 \( 1 + 402 T + p^{3} T^{2} \)
59 \( 1 - 370 T + p^{3} T^{2} \)
61 \( 1 + 550 T + p^{3} T^{2} \)
67 \( 1 + 728 T + p^{3} T^{2} \)
71 \( 1 - 540 T + p^{3} T^{2} \)
73 \( 1 + 604 T + p^{3} T^{2} \)
79 \( 1 - 792 T + p^{3} T^{2} \)
83 \( 1 - 404 T + p^{3} T^{2} \)
89 \( 1 - 938 T + p^{3} T^{2} \)
97 \( 1 + 56 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.30738529281219340529384958067, −9.565781803646040750201508407263, −8.002620034804854150153640753093, −7.58895092690028014822206377155, −6.29073839751339634421066641982, −5.25469291660954935325258950477, −4.55914480399969525270586930644, −3.06334673250803879995167419470, −2.12825028786074897279987242645, 0, 2.12825028786074897279987242645, 3.06334673250803879995167419470, 4.55914480399969525270586930644, 5.25469291660954935325258950477, 6.29073839751339634421066641982, 7.58895092690028014822206377155, 8.002620034804854150153640753093, 9.565781803646040750201508407263, 10.30738529281219340529384958067

Graph of the $Z$-function along the critical line