L(s) = 1 | + (1.67 − 0.965i)2-s + (−1.67 + 0.448i)3-s + (0.866 − 1.50i)4-s + (−2.09 + 0.792i)5-s + (−2.36 + 2.36i)6-s + (0.776 − 0.448i)7-s + 0.517i·8-s + (2.59 − 1.50i)9-s + (−2.73 + 3.34i)10-s + (−2.36 − 4.09i)11-s + (−0.776 + 2.89i)12-s + (2.12 + 1.22i)13-s + (0.866 − 1.50i)14-s + (3.14 − 2.26i)15-s + (2.23 + 3.86i)16-s + 0.378i·17-s + ⋯ |
L(s) = 1 | + (1.18 − 0.683i)2-s + (−0.965 + 0.258i)3-s + (0.433 − 0.750i)4-s + (−0.935 + 0.354i)5-s + (−0.965 + 0.965i)6-s + (0.293 − 0.169i)7-s + 0.183i·8-s + (0.866 − 0.5i)9-s + (−0.863 + 1.05i)10-s + (−0.713 − 1.23i)11-s + (−0.224 + 0.836i)12-s + (0.588 + 0.339i)13-s + (0.231 − 0.400i)14-s + (0.811 − 0.584i)15-s + (0.558 + 0.966i)16-s + 0.0919i·17-s + ⋯ |
Λ(s)=(=(45s/2ΓC(s)L(s)(0.872+0.488i)Λ(2−s)
Λ(s)=(=(45s/2ΓC(s+1/2)L(s)(0.872+0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
45
= 32⋅5
|
Sign: |
0.872+0.488i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ45(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 45, ( :1/2), 0.872+0.488i)
|
Particular Values
L(1) |
≈ |
0.946520−0.246828i |
L(21) |
≈ |
0.946520−0.246828i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.67−0.448i)T |
| 5 | 1+(2.09−0.792i)T |
good | 2 | 1+(−1.67+0.965i)T+(1−1.73i)T2 |
| 7 | 1+(−0.776+0.448i)T+(3.5−6.06i)T2 |
| 11 | 1+(2.36+4.09i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.12−1.22i)T+(6.5+11.2i)T2 |
| 17 | 1−0.378iT−17T2 |
| 19 | 1+2.73T+19T2 |
| 23 | 1+(1.67+0.965i)T+(11.5+19.9i)T2 |
| 29 | 1+(−3.23−5.59i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.36+2.36i)T+(−15.5−26.8i)T2 |
| 37 | 1+4.24iT−37T2 |
| 41 | 1+(2.13−3.69i)T+(−20.5−35.5i)T2 |
| 43 | 1+(7.91−4.57i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.79+2.19i)T+(23.5−40.7i)T2 |
| 53 | 1+3.86iT−53T2 |
| 59 | 1+(−1.26+2.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5.33+9.23i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.45−2.56i)T+(33.5+58.0i)T2 |
| 71 | 1−3.80T+71T2 |
| 73 | 1+8.48iT−73T2 |
| 79 | 1+(−0.267−0.464i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−9.02+5.20i)T+(41.5−71.8i)T2 |
| 89 | 1−7.39T+89T2 |
| 97 | 1+(8.90−5.13i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.68936037661310093880467917980, −14.50407941054231237811638291061, −13.26059582549936840659233151371, −12.16043112807290934132212929560, −11.17761564294142646094874816322, −10.69007699270294443289187580493, −8.235601823355759550425838099252, −6.29060068472210823633506581082, −4.82087524989054237548181658641, −3.53658687071640279818941773544,
4.29990823860780370590205816847, 5.29860820502979910190626681338, 6.77799752033855071011296975596, 7.951088943996130534695981124934, 10.28785459524726241120347842202, 11.80808462310258572700290070629, 12.55854724526281259284739526759, 13.51112654662852440764628839805, 15.22658234956860481282968740204, 15.59736085223624226346254995482