L(s) = 1 | + (1.67 − 0.965i)2-s + (−1.67 + 0.448i)3-s + (0.866 − 1.50i)4-s + (−2.09 + 0.792i)5-s + (−2.36 + 2.36i)6-s + (0.776 − 0.448i)7-s + 0.517i·8-s + (2.59 − 1.50i)9-s + (−2.73 + 3.34i)10-s + (−2.36 − 4.09i)11-s + (−0.776 + 2.89i)12-s + (2.12 + 1.22i)13-s + (0.866 − 1.50i)14-s + (3.14 − 2.26i)15-s + (2.23 + 3.86i)16-s + 0.378i·17-s + ⋯ |
L(s) = 1 | + (1.18 − 0.683i)2-s + (−0.965 + 0.258i)3-s + (0.433 − 0.750i)4-s + (−0.935 + 0.354i)5-s + (−0.965 + 0.965i)6-s + (0.293 − 0.169i)7-s + 0.183i·8-s + (0.866 − 0.5i)9-s + (−0.863 + 1.05i)10-s + (−0.713 − 1.23i)11-s + (−0.224 + 0.836i)12-s + (0.588 + 0.339i)13-s + (0.231 − 0.400i)14-s + (0.811 − 0.584i)15-s + (0.558 + 0.966i)16-s + 0.0919i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.946520 - 0.246828i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.946520 - 0.246828i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.67 - 0.448i)T \) |
| 5 | \( 1 + (2.09 - 0.792i)T \) |
good | 2 | \( 1 + (-1.67 + 0.965i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.776 + 0.448i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.36 + 4.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.12 - 1.22i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.378iT - 17T^{2} \) |
| 19 | \( 1 + 2.73T + 19T^{2} \) |
| 23 | \( 1 + (1.67 + 0.965i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.23 - 5.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.36 + 2.36i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.24iT - 37T^{2} \) |
| 41 | \( 1 + (2.13 - 3.69i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.91 - 4.57i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.79 + 2.19i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3.86iT - 53T^{2} \) |
| 59 | \( 1 + (-1.26 + 2.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.33 + 9.23i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.45 - 2.56i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 3.80T + 71T^{2} \) |
| 73 | \( 1 + 8.48iT - 73T^{2} \) |
| 79 | \( 1 + (-0.267 - 0.464i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.02 + 5.20i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 7.39T + 89T^{2} \) |
| 97 | \( 1 + (8.90 - 5.13i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.68936037661310093880467917980, −14.50407941054231237811638291061, −13.26059582549936840659233151371, −12.16043112807290934132212929560, −11.17761564294142646094874816322, −10.69007699270294443289187580493, −8.235601823355759550425838099252, −6.29060068472210823633506581082, −4.82087524989054237548181658641, −3.53658687071640279818941773544,
4.29990823860780370590205816847, 5.29860820502979910190626681338, 6.77799752033855071011296975596, 7.951088943996130534695981124934, 10.28785459524726241120347842202, 11.80808462310258572700290070629, 12.55854724526281259284739526759, 13.51112654662852440764628839805, 15.22658234956860481282968740204, 15.59736085223624226346254995482