L(s) = 1 | + (−0.448 − 0.258i)2-s + (0.448 − 1.67i)3-s + (−0.866 − 1.5i)4-s + (−0.358 + 2.20i)5-s + (−0.633 + 0.633i)6-s + (2.89 + 1.67i)7-s + 1.93i·8-s + (−2.59 − 1.50i)9-s + (0.732 − 0.896i)10-s + (−0.633 + 1.09i)11-s + (−2.89 + 0.776i)12-s + (−2.12 + 1.22i)13-s + (−0.866 − 1.5i)14-s + (3.53 + 1.58i)15-s + (−1.23 + 2.13i)16-s − 5.27i·17-s + ⋯ |
L(s) = 1 | + (−0.316 − 0.183i)2-s + (0.258 − 0.965i)3-s + (−0.433 − 0.750i)4-s + (−0.160 + 0.987i)5-s + (−0.258 + 0.258i)6-s + (1.09 + 0.632i)7-s + 0.683i·8-s + (−0.866 − 0.5i)9-s + (0.231 − 0.283i)10-s + (−0.191 + 0.331i)11-s + (−0.836 + 0.224i)12-s + (−0.588 + 0.339i)13-s + (−0.231 − 0.400i)14-s + (0.911 + 0.410i)15-s + (−0.308 + 0.533i)16-s − 1.28i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.653 + 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 45 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.653 + 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.640006 - 0.293230i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.640006 - 0.293230i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.448 + 1.67i)T \) |
| 5 | \( 1 + (0.358 - 2.20i)T \) |
good | 2 | \( 1 + (0.448 + 0.258i)T + (1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-2.89 - 1.67i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.633 - 1.09i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.12 - 1.22i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.27iT - 17T^{2} \) |
| 19 | \( 1 - 0.732T + 19T^{2} \) |
| 23 | \( 1 + (-0.448 + 0.258i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.232 - 0.401i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.366 + 0.633i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.24iT - 37T^{2} \) |
| 41 | \( 1 + (3.86 + 6.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.568 - 0.328i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.56 + 1.48i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.03iT - 53T^{2} \) |
| 59 | \( 1 + (-4.73 - 8.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.33 + 5.76i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.57 + 3.79i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 14.1T + 71T^{2} \) |
| 73 | \( 1 - 8.48iT - 73T^{2} \) |
| 79 | \( 1 + (-3.73 + 6.46i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.90 - 3.98i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 + (13.1 + 7.58i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.25765265406797709493756476543, −14.47184066230641958536629819428, −13.75302340938096798534128091001, −11.96952086924739140056256899157, −11.13133883190253041768959290440, −9.601069534051500250745263584444, −8.242180045575752546111058148941, −6.95480278415243523552271718165, −5.26400770260162682424791785396, −2.26244947342011222834222574810,
3.93576124535336025159435104885, 5.05925354367494962075770773831, 7.88515502509424774423259794821, 8.504047622228970716637441742687, 9.799972013775995612597336561948, 11.19086060461297595318524635221, 12.61318321986611336932119036402, 13.81243423877750383396943925787, 15.04520594880966610974105421384, 16.28917846486032054758719585802